您的位置:群走網>教學資源>說課稿>《勾股定理》說課稿
《勾股定理》說課稿
更新時間:2024-11-01 01:36:01
  • 相關推薦
《勾股定理》說課稿15篇

  作為一位不辭辛勞的人民教師,編寫說課稿是必不可少的,編寫說課稿助于積累教學經驗,不斷提高教學質量。那么應當如何寫說課稿呢?以下是小編收集整理的《勾股定理》說課稿,歡迎大家分享。

《勾股定理》說課稿1

  一、 教材分析

  1. 教材的地位和作用

  它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。

  因此他的教育教學價值就具體體現在如下三維目標中:

  知識與技能:

  1、經歷勾股定理的探索過程,體會數形結合思想。

  2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

  過程與方法:

  1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。

  2、在觀察、猜想、歸納、驗證等過程中培養學生們的數學語言表達能力和初步的邏輯推理能力。

  情感、態度與價值觀:

  1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。

  2、在探究活動中,體驗解決問題方法的多樣性,培養學生們的合作意識和然所精神。

  3、讓學生們通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。

  由于八年級的學生們具有一定分析能力,但活動經驗不足,所以

  本節課教學重點:勾股定理的探索過程,并掌握和運用它。

  教學難點:分割,補全法證面積相等,探索勾股定理。

  二..教法學法分析:

  要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

  先從學生們熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生們自己的課堂。

  學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。

  三、 教學程序設計

  1、 故事引入新課,激起學生們學習興趣。

  牛頓,瓦特的故事,讓學生們科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。

  2、探索新知

  在這里我設計了四個內容:

  ①探索等腰直角三角形三邊的關系

  ②邊長為3、4、5為邊長的直角三角形的三邊關系

  ③學生們畫兩直角邊為2,6的直角三角形,探索三邊的關系

  ④三邊為a、b、c的'直角三角形的三邊的關系,(證明)

  ⑤勾股定理歷史介紹,讓學生們體會勾股定理的文化價值。

  體現從特殊到一般的發現問題的過程。

  3、新知運用:

  ①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

  ②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

  ③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

  ④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.

  4、小結本課:

  學完了這節課,你有什么收獲?

  老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。

《勾股定理》說課稿2

  各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。

  教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。

  一、說教材

  “勾股定理的逆定理”一節?是在上節“勾股定理”之后繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。

  二、說學情

  中學生心理學研究指出,初中階段是智力發展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發展,觀察能力、記憶能力和想象能力也隨著迅速發展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。

  三、說教學目標

  根據數學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。

  【知識與技能】

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  【過程與方法】

  通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  【情感態度與價值觀】

  通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

  四、說教學重難點

  重點:勾股定理逆定理的應用;

  難點:探究勾股定理逆定理的證明過程。

  五、說教學方法

  科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統一。基于此,我準備采用的教法是講練結合法,小組討論法。

  六、說教學過程

  (一)導入新課

  在導入新課環節,我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節課的課題——勾股定理逆定理。

  【設計意圖】通過復習回顧能很好地將新舊知識聯系起來,使學生形成對知識的系統的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。

  (二)探究新知

  一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題去提示本節課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現,馬上激起學生已有知識與待研究知識的.認識沖突,引起了學生的重視激發了學生的興趣,因而全身心地投入到學習中來創造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數學就在身邊。

  因為幾何來源于現實生活,對初二學生來說選擇適當的時機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

  接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發揮教科書的作用養成學生看書的習慣這也是在培養學生的自學能力。

  (三)鞏固提高

  本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。

  第二題則進了一層用字母代替了數字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。

  思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋調節教法同時注意加強有針對性的個別指導把發展學生的思維和隨時把握學生的學習效果結合起來。

  (四)小結作業

  在小結環節,我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養能力方面比如輔助線的添法。

  設計意圖:這樣設計可以幫助學生以反思的形式回憶本節課所學的知識,加深對知識的印象,有利于學生良好的數學學習習慣的養成。

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。

《勾股定理》說課稿3

  一、 教材分析

  (一)教材地位

  這節課是九年制義務教育初級中學教材北師大版八年級第一章第一節《探索勾股定理》第一課時,它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

  (二)教學目標

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

  過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.

  情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學.

  (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發現勾股定理。

  突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

  二、教法與學法分析:

  學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合八年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

  三、 教學過程設計

  1.創設情境,提出問題

  2.實驗操作,模型構建

  3.回歸生活,應用新知

  4.知識拓展,鞏固深化5.感悟收獲,布置作業

  (一)創設情境提出問題

  (1)圖片欣賞 勾股定理數形圖 1955年希臘發行 美麗的勾股樹 20xx年國際數學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值.

  (2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節.

  二、實驗操作模型構建

  1.等腰直角三角形(數格子)

  2.一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

  設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想.

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

  通過以上實驗歸納總結勾股定理.

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律.

  三.回歸生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.

  四、知識拓展鞏固深化

  基礎題,情境題,探索題.

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展.知識的運用得到升華.

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的`問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力.

  五、感悟收獲布置作業: 這節課你的收獲是什么?

  作業: 李景萍《探索勾股定理》第一課時說課稿 1、課本習題2.1 2、搜集有關勾股定理證明的資料.

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時說課稿

  設計說明::1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

  2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.

《勾股定理》說課稿4

尊敬的各位評委、老師,您們好。

  我是臨沂市蒼山縣實驗中學的**。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理解與設計。

  一、教材分析:

  (一) 教材的地位與作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

  從學生們認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

  勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中【情感態度】方面,以我國數學文化為主線,激發學生們熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。”因此老師們利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

  學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國的數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

  第一步 情境導入 古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

  第二步 追溯歷史 解密真相

  勾股定理的`探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用“數格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了“從特殊到一般”的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環節層層深入步步引導,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步 推陳出新 借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發現兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。

  第四步 取其精華 古為今用

  我按照“理解—掌握—運用”的梯度設計了如下三組習題。

  (1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

  第五步 溫故反思 任務后延

  在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業,分層作業體現了教育面向全體學生的理念。

  四、教學評價

  在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

  五、設計說明

  本節課探究體驗貫穿始終,展示交流貫穿始終,習慣養成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統文化引入課題,趙爽弦圖證明定理,符合本節課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發學生再創數學輝煌的愿望。

  以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

《勾股定理》說課稿5

  一、說教材分析

  1.教材的地位和作用

  華師大版八年級上直角三角形三邊關系是學生在學習數的開方和整式的乘除后的一段內容,它是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個直角三角形三條邊之間的數量關系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。

  因此他的教育教學價值就具體體現在如下三維目標中:

  知識與技能:

  1、經歷勾股定理的探索過程,體會數形結合思想。

  2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

  過程與方法:

  1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。

  2、在觀察、猜想、歸納、驗證等過程中培養學生的數學語言表達能力和初步的邏輯推理能力。

  情感、態度與價值觀:

  1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。

  2、在探究活動中,體驗解決問題方法的多樣性,培養學生的合作意識和然所精神。

  3、讓學生通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。

  由于八年級的學生具有一定分析能力,但活動經驗不足。

  本節課教學重點:

  勾股定理的探索過程,并掌握和運用它。

  教學難點:

  分割,補全法證面積相等,探索勾股定理。

  二、說教法學法分析:

  要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

  先從學生熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生自己的課堂。

  學法:我想通過“操作+思考”這樣方式,有效地讓學生在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。

  三、說教學程序設計

  1、故事引入新課,激起學生學習興趣。

  牛頓,瓦特的故事,讓學生科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。

  2、探索新知

  在這里我設計了四個內容:

  ①探索等腰直角三角形三邊的關系

  ②邊長為3、4、5為邊長的直角三角形的三邊關系

  ③學生畫兩直角邊為2,6的直角三角形,探索三邊的關系

  ④三邊為a、b、c的直角三角形的三邊的關系,(證明)

  ⑤勾股定理歷史介紹,讓學生體會勾股定理的文化價值。

  體現從特殊到一般的發現問題的過程。

  3、新知運用:

  ①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

  ②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.

  ③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

  ④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了步路(假設2步為1米),卻踩傷了花草.

  4、小結本課:

  學完了這節課,你有什么收獲?

  老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的`,我們要多思考。勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。

  四、教學反思:

  教學設計主要是體現從特殊到一般的知識形成過程,探索問題的設計上有點難,第二個問題應加個3,3為直角邊的等腰直角三角形讓學生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設計進去,就為后面的練習留足時間。探索時間較長,整個課程推行進度較慢,練習較少。

  對學生的啟發不夠,對學生的關注不夠,學生對問題的思考不能及時想出來,沒有及時很好的引導,啟發,應讓學生多一些思考的空間,并及時交給思考的方法。學生反應不是太好,能力差,也或許是因為問題設計的較難,沒有很好的體現出探究。

  預期的目標沒有很好的達成,學生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發展。

《勾股定理》說課稿6

  一、教材分析

  勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

  據此,制定教學目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養學生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的.思想感情,培養他們的民族自豪感和鉆研精神。

  教學重點:勾股定理的證明和應用。

  教學難點:勾股定理的證明。

  二、教法和學法

  教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

  1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

  2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

  三、教學程序

  本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

  (一)創設情境 以古引新

  1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形。如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

  2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

  3、板書課題,出示學習目標。

  (二)初步感知 理解教材

  教師指導學生自學教材,通過自學感悟理解新知。體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

  (三)質疑解難 討論歸納

  1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

  2、教師引導學生按照要求進行拼圖,觀察并分析;

  (1)這兩個圖形有什么特點?

  (2)你能寫出這兩個圖形的面積嗎?

  (3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流;先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥。最后,師生共同歸納,形成一致意見,最終解決疑難。

  (四)鞏固練習 強化提高

  1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

  2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

  (五)歸納總結 練習反饋

  引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

  本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

《勾股定理》說課稿7

  一、說教材分析

  本節研究的是勾股定理的探索及其應用。它從邊的角度進一步對直角三角形的特征進行了刻畫。 它的主要內容是探索勾股定理,驗證勾股定理的正確性,在此基礎上,讓學生利用勾股定理來解決一些實際問題。本節課是在學生認識直角三角形的基礎上,在了解正方形和等腰直角三角形以后進行學習的,它是前面所學知識的延伸和拓展,又是后面學習勾股定理逆定理的基礎,具有承上啟下的作用。

  二、說教學目標

  教學目標的確定:教學目標是一堂課的中心任務,它只有在豐富多彩的數學活動中才能充分實現。一堂課的教學目標應全面、適度、明確、具體,便于檢測。因此根據學生已有的認知基礎和新課程標準,我確定了本節課教學目標為:

  1、知識技能:

  (1)了解勾股定理的文化背景,體驗勾股定理的探索和驗證過程。

  (2)運用勾股定理進行簡單的計算和解釋生活中的實際問題。

  (3)運用勾股定理會在數軸上畫出表示無理數的點。

  2、數學思考:

  在勾股定理的探索、從實際問題抽象出直角三角形和在數軸上畫出表示無理數的點的過程中,發展合情推理能力,初步體會、掌握轉化和數形結合的思想方法。

  3、解決問題:

  通過拼圖、探究活動,體驗數學思維的嚴謹性,發展形象思維。學會與人合作并能與他人交流思維的過程和探究的結果。能夠運用勾股定理解決直角三角形,在數軸上畫出表示無理數的點等有關實際問題。

  4、情感態度:

  (1)通過對勾股定理歷史的了解和實例應用,體會勾股定理的文化價值,感受數學文化,激發學習熱情。

  (2)通過獲得成功的經驗和克服困難的經歷,增進數學學習的信心。

  (3)通過研究一系列富有探究性的問題,培養學生與他人交流、合作的意識和品質。

  三、說教學重、難點

  教學重、難點的確定:關注學生是否能與同伴進行有效的合作交流;關注學生是否積極的進行思考;關注學生能否探索出解決問題的方法。

  重點:通過探索、拼圖驗證勾股定理及勾股定理的應用過程,使學生獲得一些研究問題與合作交流的方法經驗。

  難點:利用數形結合的方法探索發現、驗證勾股定理及其在實際生活中的應用。

  四、知識反映出來的技能、能力、方法、德育等因素

  本節知識通過 “ 探索發現---拼圖實踐—探索驗證—分析結果—運用定理 ” 等活動過程,使學生進一步理解勾股定理,并從中學會思考,學會探索,學會運用,學會交流,體會知識反映出來的`豐富的文化內涵,指導學生認識現實世界中蘊涵著的數學信息。

  五、教學方法

  數學知識、數學思想和方法必須由學生在現實的數學活動實踐中理解和發展;教學中,以學生為本位,充分挖掘教材的空間,為學生搭建動手實踐、自主探索、合作交流的平臺;

  注重讓學生經歷數學知識的形成過程,充分調動學生的學習積極性,并通過這個過程,使學生體驗學習成功的樂趣,在積極的思維中獲取知識,發展能力。

  六、教學程序設計:

  為充分發揮學生的主體性和教師的主導輔助作用,設計了以下幾個環節:

  (1)創設情境,引入新課

  問題

  某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊能否進入三樓滅火?

  師生行為:教師出示照片及圖片,并提出問題,學生觀察圖片發表見解。

  設計意圖:從現實生活中提出勾股定理,為學生能夠積極主動的投入到探索活動創設情景,激發學生學習熱情。同時為探索勾股定理提供背景材料。達到引入新課的目的。

  (1)獨立探究,合作交流。

  講述數學家畢達哥拉斯的故事

  問題

  A、B、C的面積有什么關系?

  SA+SB=SC

  直角三角形三邊有什么關系?

  兩直邊的平方和等于斜邊的平方

  設計意圖:問題是思維的起點,通過激發學生好奇、探究和主動學習的欲望。利用面積相等法,讓學生發現以直角三角形兩直角邊為邊長的正方形的面積,以斜邊為邊長的正方形的面積之間的關系。降低學生學習難度,從(3)自主實踐,探索驗證

  《課程標準》指出:“數學教學是數學活動的教學。”要求學生分學習小組,動手實踐,積極思考,獲得技能與解決問題的方法。關注學生動手實踐,關注學生主動探索與合作,關注學生積極思考,給學生思維表達的時間、空間,讓學生經歷探索知識的過程,并在這個過程中得到發展.。

  兩種拼圖方案

  1、2、

  師生行為:教師演示動畫和圖片,同時提出問題,學生在獨立思考的基礎上以小組為單位,動手拼接,教師深入小組活動傾聽學生的交流,幫助、指導學生完成拼圖活動。學生展示分割、拼接的過程。

  設計意圖:通過觀察、拼圖、探究活動,給學生充分的時間與空間討論、交流,鼓勵學生敢于發表自己的見解,感受合作的重要性,充分調動學生思維的積極性,發展形象思維,使學生對定理更加深刻,通過這一教學過程來達到突破難點的目的。

  (4)應用定理,解決問題

  數學源于實踐,運用于實踐;開放性處理教材,鼓勵學生充分地發表意見,表現自我,讓學生在教師營造的“創新土壤”中成為主人;給學生思維以廣闊的空間,培養學生從多角度運用所學知識尋求解決問題的能力.

《勾股定理》說課稿8

  今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數學下冊第十八章第一節的第一課時。

  一、教學背景分析

  1、教材分析

  本節課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數量關系,并應用它解決問題。學好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學情分析

  通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。

  3、教學目標:

  根據八年級學生的認知水平,依據新課程標準和教學大綱的要求,我制定了如下的教學目標:

  知識與能力目標:了解勾股定理的發現過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養在實際生活中發現問題總結規律的意識和能力.

  過程與方法目標:通過創設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。

  情感態度價值觀目標:感受數學文化,激發學生學習的熱情,體驗合作學習成功的喜悅,滲透數形結合的思想。

  4、教學重點、難點

  通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學

  重難點為探索和證明勾股定理.

  二、教材處理

  根據學生情況,為有效培養學生能力,在教學過程中,以創設問題情境為先導,運用直觀教具、多媒體等手段,激發學生學習興趣,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

  三、教學策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當,才會有效。根據本課內容特點和八年級學生思維活動特點,我采用了引導發現教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。

  2、學法

  “授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現學習的自主性,從不同層次發掘不同學生的不同能力,從而達到發展學生思維能力的目的,發掘學生的創新精神。

  3、教學模式

  根據新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。

  四、教學過程

  (一)創設情境,引入新課

  利用多媒體課件,給學生出示20xx年國際數學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現實生活中提出趙爽弦圖,激發學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。

  (二)引導學生,探究新知

  1、初步感知定理:這一環節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題:現在也請你觀察,看看有什么發現?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規律,使學生再次感知發現的規律。

  2、提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,使學生由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

  3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的`探究,使學生創造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。培養了學生的發散思維、一題多解和探究數學問題的能力。

  4、總結定理:讓學生自己總結定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數量關系即勾股定理,培養了學生的語言表達能力和歸納概括能力。

  (三)反饋訓練,鞏固新知

  學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養,設計一組有坡度的練習題:A組動腦筋,想一想,是本節基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯系,培養學生綜合運用知識的能力。C組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。

  (四)歸納小結,深化新知

  本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

  (五)布置作業,拓展新知

  讓學生收集有關勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

  (六)板書設計,明確新知

  本節課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

《勾股定理》說課稿9

  一、說教材分析:

  (一)本節內容在全書和章節的地位

  這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

  (二)三維教學目標:

  1.【知識與能力目標】

  ⒈理解并掌握勾股定理的內容和證明,能靈活運用勾股定理及其計算;

  ⒉通過觀察分析,大膽猜想,并且探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

  2.【過程與方法目標】

  在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并且體會數形結合和從特殊到一般的思想方法。

  3.【情感態度與價值觀】通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

  (三)教學重點、難點:

  【教學重點】勾股定理的證明與運用

  【教學難點】用面積法等方法證明勾股定理

  【難點成因】對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】:

  ⒈創設情景,激發思維:創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

  ⒉自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

  ⒊張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

  二、說教法與學法分析

  【教法分析】數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。

  【學法分析】新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并且參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使得學生真正的成為學習的主人。

  三、說教學過程設計

  (一)創設情景

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

  (二)動手操作

  ⒈課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能得出什么結論?

  學生可能會考慮到各種不同的思考方法,老師要給予肯定,并且要鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

  ⒉緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

  ⒊再問:當邊長不為整數的直角三角形是否也是存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的.情形,這樣歸納的結論更具有一般性。

  (三)歸納驗證

  【歸納】通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整一堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

  【驗證】先后的三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也是有利于培養學生嚴謹、科學的學習態度。

  (四)問題解決

  ⒈讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

  ⒉自學課本P101例1,然后完成P102練習。

  (五)課堂小結

  1.小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

  2.教師用多媒體介紹“勾股定理史話”

  ①《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。

  ②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

  目的是對學生進行愛國主義教育,激勵學生要奮發向上。

  (六)布置作業

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

《勾股定理》說課稿10

  一、教材分析

  本節課是九年制義務教育課程標準實驗教科書(蘇科版)八年級上冊第二章第一節“勾股定理”的第一課時.在本節課以前,學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發揮和發展。

  在探求勾股定理的過程中,蘊涵了豐富的數學思想。把三角形有一個直角“形”的特點轉化為三邊之間的“數”的關系,是數形結合的典范;把探求邊的關系轉化為探求面積的關系,將邊不在格線上的圖形轉化為可計算的格點圖形,是轉化思想的體現;先探求特殊的直角三角形的三邊關系,再猜測一般直角三角形的三邊關系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節課,要創設問題串,提供學生活動的方案,讓學生在活動中思考,在思考中創新,認識和理解勾股定理,并能利用勾股定理解決一些簡單的有關直角三角形的計算問題.

  二、教學目標

  1、讓學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。

  2、讓學生經歷拼圖實驗、計算面積的過程,在過程中養成獨立思考、合作交流的學習習慣;讓各類型的學生在這些過程中發揮自己特長,通過解決問題增強自信心,激發學習數學的興趣;通過老師的介紹,感受勾股定理的文化價值.

  3、能說出勾股定理,并能用勾股定理解決簡單問題.

  三、教學重點

  勾股定理的探索過程.

  四、教學難點

  將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.

  五、教學方法與教學手段

  采用探究發現式教學,提供適當的問題情境.給學生自主探究交流的空間,引導學生有目的地探索.

  六、教學過程

  (一)創設情境 提出問題

  1.同學們,我們已經學過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

  2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

  3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節課就讓我們一起來探討這個問題.板書:直角三角形三邊數量關系.

  (這是對三角形三邊的不等關系和三角形全等的判定的回顧,從學生從原有的認知水平出發,揭示這節課產生的根源,符合學生的認知心理,也自然地引出本節課的目標.讓學生體會到當一般性的問題不好解決時,可以先將一般問題轉化為特殊問題來研究.)

  (二)實踐探索 猜想歸納

  1、用什么方法來探求板書:直角三角形三邊數量關系呢?

  回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?

  (學生討論)

  課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.

  今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系.

  (從學生已有的學習經驗出發,將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

  2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?

  (同位利用教師提供的學案,合作拼圖。)

  通過拼圖,你有什么發現?

  (如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發了學生的猜想,增加了研究的趣味性,鍛煉了學生的空間思維能力和動手能力.體現了活動——數學的思想.)

  3、拼圖活動引發我們的靈感;運算推演

  證實我們的猜想.為了計算面積方便,我們可

  將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).

  (學生容易回答SP=9,SQ=16。)

  你是如何得到的?

  (可以數圖形中的小方格的個數,也可以通

  過正方形面積公式計算得到。)

  如何計算 ?

  (的求法是這節課的難點,這時可讓學生先在學案上獨立分析,再通過小組交流,最后由小組代表到臺前展示.學生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒有一般性,若有學生提出,應提醒學生.)

  4、肯定學生的研究成果,進而讓學生打開書回顧課本上的'提示.從小明、小麗的方法中你能得到什么啟發?

  (把圖形進行“割”和“補”,即把不能利用網格線直接計算面積的圖形轉化成可以利用網格線直接計算面積的圖形,讓學生體會將較難的問題轉化為簡單問題的思想)

  5、再給出直角邊為5和3的直角三角形(圖9),讓學生計算分別以三邊作為邊所作的正方形面積.

  (這是轉化思想,也是“割補”方法的再一次應用.在

  前面的探求過程中有的學生沒能自己做出來,提供再一次的機會,可讓全體學生再次感受轉化思想,體驗成功的樂趣.)

  通過計算,你發現這三個正方形面積間有什么關系嗎?

  (SP+SQ=SR,要給學生留有思考時間.)

  6、通過以上的實驗、操作、計算,我們發現以直角三角形的各邊為邊所作的正方形的面積之間有什么關系呢?同學們還有什么疑問嗎?

  (以直角邊為邊所作的正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學生提出我們討論的都是邊長為整數的直角三角形情況,那么邊長是小數時,結論是否成立?教師就演示以下實驗。)

  利用方格紙,我們方便計算直角邊為整數的情況,若直角邊為小數時,所得到的正方形面積之間也有如上關系嗎?

  將網格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

  (利用幾何畫板的高效性、動態性反映這一過程,讓學生體會到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學生的印象也更深刻.)

  7、我們這節課是探索直角三角形三邊數量關系.至此,你對直角三角形三邊的數量關系有什么發現?

  (面積是邊長的平方,面積間的等量關系轉化為邊長間的等量關系,即直角三角形三邊的等量關系:兩直角邊的平方和等于下邊的平方.)

  (這一問題的結論是本節課的點睛之筆,應充分讓學生總結,交流,表達.)

  8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.一段緊張的探索過程之后,播放一段有關勾股歷史的錄音.

  (這樣既活躍了課堂氣氛,又展現了勾股歷史,激發學生熱愛祖國悠久歷史文化,

  激勵學生發奮學習的情感.)

  9、閱讀課本,提出問題

  (讓學生有將知識內化為自己的知識結構的過程,教師巡視,對有困難的同學給予幫助,促進全班同學共同進步,體現面向全體的教學原則.)

  (三)課堂練習 鞏固新知

  1.完成課本第45頁練習第1題、第2題.

  (1)求下列直角三角形中未知邊的長:

  (2)求下列圖中未知數x、y、z的值:

  (充分利用課本,在前面閱讀的基礎上做課本上的練習題。提問學生口答,老師再規范板書一題.通過對勾股定理的基本應用,讓學生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

  2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學生沿對角線踏出了一條斜“路”,這種情況在生活中時有發生。請問同學們:

  (1)這幾位同學為什么不走正路,走斜“路”?

  (2)他們知道走斜“路”比正路少走幾步嗎?

  (3)他們這樣這樣做,值得嗎?

  (這是一道貼近學生生活的實例,在勾股定理的運用中滲透了德育教育.)

  (四)課堂小結 布置作業

  1、通過本節課的學習,大家有什么收獲?有什么疑問?你認為還有什么要繼續探索的問題?

  (學生總結本堂課的收獲,可以是知識、應用、數學思想方法以及獲取新知的途徑等.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生的綜合表達能力.如果學生沒有提出繼續要探討的問題,教師可以引導學生思考:直角三角形的三邊有特殊的等量關系,一般三角形三邊是否也存在一種等量關系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內容,首尾呼應,激發學生不滿足于現狀,有不斷提出新問題的欲望,即培養學生的創新意識.)

  2、作業

  (1)課本第471頁第2題,并完成第45頁的實驗。

  (2)在以下網頁中你可以找到有關勾股定理的豐富的內容,請你結合本節課的學習

  和從網上或書本上自學到的知識寫一篇有關勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

  n

  (作業的多元化、多層次,有利于全體學生的全面素質發展。)教育大全

  七、教學設計說明:

  本節課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.

  本節課從學生的原有認知出發提出問題,揭示這節課產生的根源,符合學生的認知心理.教科書設計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎上,為了更好地展示這一探索過程,本節課先讓學生回顧利用圖形面積探求數學公式的經歷,以此確定研究方法.繼而設計了剪紙活動,從中引發學生的猜想,再利用幾何畫板這一工具帶領學生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學生充分經歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點,應讓學生充分地思考、討論、總結方法.通過對特殊到一般的考查,讓學生主動建立由數到形,由形到數的聯想,從中使學生不斷積累數學活動的經驗,歸納出直角三角形三邊數量之間的關系.在教學中鼓勵學生采用觀察分析,自主探索,合作交流的學習方法,培養學生主動的動手,動腦,動口的學習習慣和能力,使學生真正成為學習的主人.

  除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神.

  練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.題目的設計中滲透了德育教育,拓展了學生的空間思維,使得一節幾何課全面地考查了學生的各方面思維.

  讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.

  作業為了達到提高鞏固的目的,提供給學生網址是為了拓展學生的視野,以期學生能主動地探求對勾股定理更深入的認識.

《勾股定理》說課稿11

  一、教材分析

  (一)教材地位

  這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

  (二)教學目標

  1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  2、過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。

  3、情感態度與價值觀: 激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

  (三)教學重點

  經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發現勾股定理。

  突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析

  學情分析:

  七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。

  另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:

  結合七年級學生和本節教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。

  把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、教學過程設計

  (一)創設情境,提出問題

  (1)圖片欣賞勾股定理數形圖

  1955年希臘發行美麗的勾股樹

  20xx年國際數學的'一枚紀念郵票

  大會會標

  設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

  (2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

  (二)實驗操作模型構建

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

  設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律。

  (三)回歸生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

  (四)知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創設情境 ,鍛煉了發散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

  (五)感悟收獲布置作業

  這節課你的收獲是什么?

  作業:

  1、課本習題2.1

  2、搜集有關勾股定理證明的資料。

  四、板書設計

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設計說明:

  1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

  圖文搜集自網絡,如有侵權,請聯系刪除。

  鐵樹老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴

《勾股定理》說課稿12

  各位專家領導,上午好:今天我說課的課題是《勾股定理》

  一、教材分析:

  (一)本節內容在全書和章節的地位

  這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

  (二)三維教學目標:

  1.【知識與能力目標】

  ⒈理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

  ⒉通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

  2. 【過程與方法目標】

  在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

  3.【情感態度與價值觀】

  通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

  (三)教學重點、難點:

  【教學重點】

  勾股定理的證明與運用

  【教學難點】

  用面積法等方法證明勾股定理

  【難點成因】

  對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】

  ⒈創設情景,激發思維:創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

  ⒉自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

  ⒊張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的.學習積極性。

  二、教法與學法分析

  【教法分析】

  數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。

  【學法分析】

  新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

  三、教學過程設計

  (一)創設情景

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

  (二)動手操作

  ⒈課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

  學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

  ⒉緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

  ⒊再問:當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

  (三)歸納驗證

  【歸納】通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

  【驗證】先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。

  (四)問題解決

  ⒈讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

  ⒉自學課本P101例1,然后完成P102練習。

  (五)課堂小結

  1.小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

  2.教師用多媒體介紹“勾股定理史話”

  ①《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。

  ②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

  目的是對學生進行愛國主義教育,激勵學生奮發向上。

  (六)布置作業

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

  以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿13

  一、 教材分析

  (一)教材地位與作用

  勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

  (二)教學目標 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。 情感態度與價值觀: 激發愛國熱情,體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

  (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發現勾股定理。

  突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的.面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、 教學過程設計

  1、創設情境,提出問題 2、實驗操作,模型構建 3、回歸生活,應用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業

  (一)創設情境提出問題

  (1)圖片欣賞 勾股定理數形圖 1955年希臘發行 美麗的勾股樹20xx年國際數學的一枚紀念郵票 大會會標

  設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

  (2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

  二、實驗操作模型構建

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系? 設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律。

  三。回歸生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創設情境 ,鍛煉了發散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

  五、感悟收獲布置作業: 這節課你的收獲是什么?

  作業:1、課本習題2、1

  2、搜集有關勾股定理證明的資料。

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

  設計說明:1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

《勾股定理》說課稿14

尊敬的各位領導,各位老師:

  大家好!今天我說課的內容是初中八年級數學人教版教材第十八章第一節《勾股定理》(第一課時),下面我分五部分來匯報我這節課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。

  一、教材分析

  (一) 教材地位和作用

  勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數量關系,將幾何圖形與數字聯系起來。它在數學的發展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節課有著舉足輕重的地位。

  (二)教學目標

  根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:

  1、知識與技能方面

  了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數量關系, 并能簡單應用。

  2、過程與方法方面

  經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數學思考過程的條理性,發展數學的說理和簡單的推理的意識,和語言表達的能力,并體會數形結合和特殊到一般的思想方法。

  3、情感態度與價值觀方面

  (1)通過了解勾股定理的歷史,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

  (2) 通過研究一系列富有探 究性的問題,培養學生與他人交流、合作的意識和品質。

  (三)教學重點難點

  教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

  教學難點:勾股定理的證明。

  二、學情分析

  我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環境,給他們自己探索、發表自己見解和表現自己才華的機會;更希望教師滿足他 們的創造愿望。

  三、教法選擇

  根據本節課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發現法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

  四、學法指導:

  為了充分體現《新課標》的要求,培養學生的觀察分析能力,邏輯思維能力,積累豐富的數學學習經驗,這節課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數學思 想。借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主人。

  五、教學過程

  根據《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節課的教學過程我是這樣設計的:

  (一)創設情境,引入新課

  一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節課的學習中。為了體現數學源于生活,數學是從人的需要中產生的,學習數學的目的是為了用數學解決實際問題。我設計了以下題目:

  星期日老師帶領全班同學去某山風景區游玩,同學們看到山勢險峻,查看景區示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

  ∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

  答案是不能的。然后教師指出,通過這節課的學習,問題將迎刃而解。

  設計意圖:以趣味性題目引入。從而設置懸念,激發學生的學習興趣。 教師引導學生把實際問題轉化為數學問題,這其中滲透了一種數學思想,對于學生也是一種挑戰,能激發學生探究的欲望,自然引出下面的環節。

  緊接著出示本節課的學習目標:

  1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、掌握勾股定理的內容,并會簡單應用。

  (二)勾股定理的探索

  1、猜想結論

  (1)探究一:等腰直角三角形三邊關系。

  由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

  在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。

  提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?

  (2、)探究二:一般的直角三角形三邊關系。

  在課件中的格點圖形中,利用面積,再次探究直角三角形的`三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

  設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發現過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數學的自信心。

  2、證明猜想

  目前世界上證明該勾股定理的方法有很多種,而我國古代數學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

  設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。

  3、簡要介紹勾股定理命名的由來

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數學著作《周髀算經》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發現了勾股定理, 但他比商高晚出生五百多年。

  設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發向上。

  (三)勾股定理的應用

  1、利用勾股定理,解決引入中的問題。體會數學在實際生活中的應用。

  2、教學例1:課本66頁探究1

  師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.

  木板的寬2、2米大于2米,所以豎著不能從門框內通過.

  因為對角線AC的長度最大,所以只能試試斜著 能否通過.

  從而將實際問題轉化為數學問題.

  提示:

  (1)在圖中構造出一個直角三角形。(連接AC)

  (2)知道直角△ABC的那條邊?

  (3)知道直角三角形兩條邊長求第三邊用什么方法呢?

  設計意圖:此題是將實際為題轉化為數學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

  (四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。

  設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

  (五)課堂小結

  對學生提問:"通過這節課的學習有什么收獲?"

  學生同桌間暢談自己的學習感受和體會,并請個別學生發言。

  設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養了學生口頭表達能力。

  (六)達標訓練與反饋

  設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現分層教學。

  以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

《勾股定理》說課稿15

  各位老師、評委:大家好﹗

  今天我說課的題目是選自人教版八年級數學第十八章第一節的內容:勾股定理。

  我將從以下這幾個方面進行本節課的闡述:教材分析、學情分析、教法、學法指導、教學過程設計以及教學反思。

  下面請大家和我共同走進教材。

  (一)教材分析

  ⒈教材的地位和作用

  《勾股定理》是人教版新課標八年級數學第十八章第一節第一課時內容,勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,是中學數學幾個重要定理之一。它揭示了一個直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,在實際生活中用途很大。勾股定理的發現、驗證和應用蘊含著豐富的文化價值,它在理論上占有重要地位,學好本節至關重要。

  ⒉教學目標

  根據新課程標準對學生知識、能力的要求,結合八年級學生實際水平、認知特點制定以下教學目標。

  知識與技能:了解勾股定理的文化背景,體驗勾股定理的探索過程,能夠靈活地運用勾股定理及其計算。

  過程與方法:讓學生經歷“觀察-猜想-歸納-驗證”的數學過程,并從中體會數形結合及從特殊到一般的數學思想。培養學生觀察、比較、分析、推理的能力。

  情感態度與價值觀:通過介紹我國古代在研究勾股定理方面取得的偉大成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感,在探索問題的過程中,培養學生的合作交流意識和探索精神。

  3.重點和難點

  勾股定理的學習是建立在掌握一般三角形的性質、直角三角形以及三角形全等的基礎上, 是直角三角形性質的拓展。本節課主要是對勾股定理的探索和勾股定理的證明。勾股定理的證明方法很多,本節課介紹的是等積法。通過本節課的教學,引領學生從不同的角度發現問題、用多樣化策略解決問題,從而提高學生分析、解決問題的能力。

  因此本節課的重點:是勾股定理的發現、驗證和應用。

  八年級學生已初步具備幾何的觀察能力和說理能力,也有了一定的空間想象和動手操作能力,但是他們的推理能力較弱、抽象思維能力不足。而本節課采用的是等積法證明。由于學生之前沒有接觸過等積法證明,他們對這種證明方法感到很陌生,尤其是覺得推理根據不明確,不象證明,沒有教師的啟發引領,學生不容易獨立想到。

  因此本節課的難點:是用拼圖方法、面積法證明勾股定理。

  (二)學情分析

  八年級學生已初步具有幾何圖形的觀察,幾何證明的理論思維能力。希望老師預設便于他們進行觀察的幾何環境,給他們發表自己見解和表現自己才華的機會,希望老師滿足他們的創造愿望,讓他們實際操作,使他們獲得施展自己創造才能的機會。

  (三)說教學方法

  數學是一門培養人的思維,發展人的思維的重要學科,因此,在教學中,要展現獲取知識和方法的思維過程, 針對八年級學生的知識結構和心理特征,本節課采取引導探索法,由淺入深,由特殊到一般地提出問題。以導為主,采用設疑的形式,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。使學生得到獲得新知的成功感受,從而激發學生鉆研新知。并利用教具與多媒體進行教學。

  (四)說學習方法

  我們常說:“現代的文盲不是不識字的人, 而是沒有掌握學習方法的人”, 因而在教學中要特別重視學法的指導, 我采用了如下的學法指導:

  在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

  (五)說教學過程

  根據學生的認知規律和學習心理,本節課分六個活動進行學習,為了擴大課堂容量節省時間提高課堂效率,擬采用多媒體教學。

  【活動1】:(多媒體展示)欣賞圖片 了解歷史

  第一幅圖片配上文字說明。

  設計意圖:這樣的導入富有科學特色和濃郁的數學氣息,激起學生強烈的興趣和求知欲。

  第二幅圖片為20xx年在我國北京召開的第24屆國際數學家大會的場景,值得一提的是這次大會的會徽,為著名的趙爽弦圖。

  設計意圖:在學生欣賞趙爽弦圖的過程中,進行愛國主義教育,可以讓他們充分體會到我國古代在數學研究方面取得的偉大成就,從而激發學生的愛國熱情和民族自豪感。

  第三幅圖片為介紹古代勾和股。

  設計意圖:簡單介紹勾股定理的歷史,引出勾股定理這一課題。

  學生,讀一讀和觀察。

  【活動2】:探索勾股定理

  首先講述畢達哥拉斯到朋友家做客的故事。(多媒體展示)

  然后提出兩個問題,讓學生沿著畢達哥拉斯的足跡去探尋勾股定理。

  {問題一}:在圖中你能發現那些基本圖形?

  {問題二}:與等腰直角三角形相鄰的正方形面積之間有怎樣的關系?

  (多媒體展示)探究一

  {問題三}:如圖,每個小方格的面積為1個單位,你能寫出正方形A、B、C的面積嗎?

  {問題四}:由此你可以得出等腰直角三角形三邊存在著一種怎樣特殊的數量關系嗎?

  學生在獨立探究的基礎上觀察圖片,計算面積,分組交流, 猜想和歸納。

  教師參與學生小組活動,指導,傾聽學生交流。針對不同認識水平的學生,引導其用不同的方法得出大正方形的面積。在計算C的面積時可能有一定的難度,此時就要用到數學當中常見的割補法。因此需要教師的引導。

  設計意圖:通過講傳說故事來激發學生學習興趣,引導學生進入學習狀態。學生會很積極的投入到探索這個問題的實踐中。讓學生并且嘗試了從不同角度尋求解決問題的有效方法,并通過對方法的反思,獲得解決問題的經驗。

  “問題是思維的起點”,通過層層設問,引導學生發現新知。

  (多媒體展示)探究二

  {問題五}:等腰直角三角形三邊具有這樣的特殊關系,那么一般的`直角三角形呢?如圖,每個小方格的面積為1個單位,你能寫出正方形A、B、C的面積嗎?

  將一般的直角三角形放入到網格中,并使得直角三角形的兩條直角邊為正整數,讓學生去計算圖1和圖2中六個正方形的面積。關注學生能否用不同的方法得到大正方形的面積。

  學生計算,觀察,猜想,語言表達猜想結論。

  教師參與學生小組活動,指導,傾聽學生交流。針對不同認識水平的學生,引導其用不同的方法得出大正方形的面積。在計算C的面積時可能有一定的難度,此時又用到數學當中常見的割補法。因此需要教師的引導。

  設計意圖:學生通過探究A、B、C三個正方形之間的面積關系,進而發現、猜想勾股定理,并用自己的語言表達出來。這樣的設計滲透了從特殊到一般的數學思想。發揮學生的主體作用,培養學生類比遷移能力及探索問題的能力,使學生在相互欣賞,爭辯,互助中得到提高。

  (多媒體展示)猜想:

  如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2 b2=c2。

  即直角三角形兩直角邊的平方和等于斜邊的平方。

  {問題六}:是不是所有的直角三角形都有這樣的特點呢?

  【活動3】:證明勾股定理

  師:這就需要我們對一個一般的直角三角形進行證明。到目前為止,對這個命題的證明方法已有幾百種之多。下面我們就來看一看我國數學家趙爽是怎樣證明這個命題的。

  {問題七}:請同學們拿出課前準備好的四個全等的直角三角形,記三邊分別為a,b,c,然后拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形?

  學生獨立思考的基礎上以小組為單位,用準備好的四個全等直角三角形動手拼接。學生展示分割,拼接的過程。

  教師深入小組參與活動,傾聽學生的交流,幫助指導學生完成拼圖活動。并請小組代表到黑板演示拼圖過程,鼓勵學生敢于發表自己的見解。

  設計意圖:通過這些實際操作,調動學生思維積極性,同時使學生對定理的理解更加深刻,學生能夠進一步加深對數形結合的理解,拼圖也會產生感性認識,也為論證勾股定理做好準備。

  {問題八}:它們的面積分別怎樣表示?它們有什么關系呢?

  (多媒體展示)拼接圖,面積計算

  學生觀察,計算,小組討論。

  在計算過程中,我重點在于引導學生分析圖中面積之間的關系,得出結論:大正方形的面積= 4個全等的直角三角形的面積 小正方形的面積,從而運用等積法證明勾股定理。(這樣,既突破了難點,讓學生感受到用等積法證明勾股定理的奧妙。)

  設計意圖:給學生充分的時間和空間參與到數學活動中來,并發揮他們的主觀能動性,可以進一步提高學生的學習興趣。利用分組討論,加強學生的合作意識。

  師:我們現在通過推理證實了我們的猜想的正確性,經過證明被確認正確的命題叫做定理。猜想與直角三角形的邊有關,我國把它稱為勾股定理。“趙爽弦圖”表現了我國古人對數學的鉆研精神和聰明才智,它是我古代數學的驕傲。正因如此,這個圖案被選為20xx年在北京召開的國際數學大會的會徽。

  【活動4】:應用勾股定理(多媒體展示)

  (小組選擇,采用競答方式)

  填空

  P的面積= ,

  AB= X=

  BC=

  BC=

  2、求下列圖中表示邊的未知數x、y、z的值。

  3求下列直角三角形中未知邊的長:

  設計意圖:首先是幾道填空題和勾股定理的直接應用,這幾道題既有類似又有不同,通過變式訓練,強調應用勾股定理時應注意的問題。一是勾股定理要應用于直角三角形當中,二是要注意哪一條邊為斜邊。

  4、求出下列直角三角形中未知邊的長度。

  設計意圖:規范解題過程。

  5、小明的媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你能解釋這是為什么嗎?(我們通過所說的29英寸或74厘米的電視機,是指其屏幕對角線的長度。)

  設計意圖:這是一道和學生生活密切相關的應用題,讓學生充分體會到數學是來源于生活,應用于生活。

  【活動5】:總結勾股定理(多媒體展示)

  1.這節課你的收獲是什么?

  2.理解“勾股定理”應該注意什么問題?

  3.你覺得“勾股定理”有用嗎?

  學生談談這節課的收獲是什么,讓學生暢所欲言。

  教師進行補充,總結,為下節課做好鋪墊。

  設計意圖:通過小結為學生創造交流的空間,調動學生的積極性,即引導學生培養學生從面積的角度理解勾股定理,又從能力,情感,態度等方面關注學生的整體感受。

  【活動6】:布置作業(多媒體展示)

  1.閱讀教材第71頁的閱讀與思考-----《勾股定理的證明》。

  2.收集有關勾股定理的證明方法,下節展示交流。

  3.做一棵奇妙的勾股樹(選做)

  設計的意圖:給學生留有繼續學習的空間和興趣。

  (六)說教學反思

  本課意在創設愉悅和諧的樂學氣氛,始終面向全體學生“以學生的發展為本” 的教育理念,課堂教學充分體現學生的主體性,給學生留下最大化的思維空間。注重數學思想方法的滲透,整個勾股定理的探索、發現、證明都著意滲透數形結合,又從一般到特殊,從特殊回歸到一般的數學思想方法。重視數學史教育,激發學生的愛國情感。數學問題生活化,用數學知識解決生活中的實際問題,關鍵在于把生活問題轉化為數學問題,讓生活問題數學化,然后才能得以解決。在這個過程中,很多時候需要老師幫助學生去理解、轉化,而更多時候需要學生自己去探索、嘗試,并在失敗中尋找成功的途徑。教學中,如果能讓學生自己反思答案與方法的合理性,那么效果會更好了。

  板書設計:

  18.1 勾股定理

  勾股定理:

  如果直角三角形兩直角邊分別為a,b,

  斜邊為c,那么a2 b2=c2

【《勾股定理》說課稿】相關文章:

《勾股定理》說課稿01-04

《勾股定理》的說課稿01-18

探索《勾股定理》說課稿01-04

《勾股定理》說課稿【精】01-06

《勾股定理》優秀說課稿09-22

【推薦】《勾股定理》說課稿01-06

勾股定理說課稿范文08-28

《勾股定理》說課稿(15篇)01-04

《勾股定理》說課稿精選15篇01-04

久久一级2021视频,久久人成免费视频,欧美国产亚洲卡通综合,久久综合亚洲一区二区三区色
久久国产午夜精品理论片 | 亚洲精品高清线久久 | 香蕉亚洲一级国产欧美 | 亚洲欧美另类中文 | 综合久久久久久久久久久 | 中文字幕不卡在线 |