- 相關推薦
作為一名專為他人授業解惑的人民教師,常常需要準備說課稿,借助說課稿我們可以快速提升自己的教學能力。那么大家知道正規的說課稿是怎么寫的嗎?下面是小編為大家收集的高中數學說課稿,歡迎閱讀,希望大家能夠喜歡。
高中數學說課稿1
各位老師:
大家好!我叫張西元。我說課的題目是《系統抽樣》,內容選自于蘇教版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數表法,在此基礎上進一步學習系統抽樣,它也是“統計學”的重要組成部分,通過對系統抽樣的學習,更加突出統計在日常生活中的應用,體現它在中學數學中的地位。
2 教學的重點和難點
重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題。難點:當 不是整數時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。
二、教學目標分析
1.知識與技能目標:
(1)正確理解系統抽樣的概念;
(2)掌握系統抽樣的一般步驟;
(3)正確理解系統抽樣與簡單隨機抽樣的關系;
2、過程與方法目標:
通過對實際問題的探究,歸納應用數學知識解決實際問題的方法,理解分類討論的數學方法高考資源
3、情感態度與價值觀目標:
通過數學活動,感受數學對實際生活的需要,體會現實世界和數學知識的聯系
三、教學方法與手段分析
1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學。
2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。
四、教學過程分析
(一)新課引入
1、復習提問:
(1)什么是簡單隨機抽樣?有哪兩種方法?
(2)抽簽法與隨機數表法的一般步驟是什么?
(3)簡單隨機抽樣應注意哪兩個原則?
(4)什么樣的總體適合簡單隨機抽樣?為什么?
[設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎
2、實例探究
實例:某學校為了了解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法?
當總體數量較多時,應當如何抽取?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。
[設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發現新知識新方法,完成從總體中抽取樣本,并發現“等距抽樣”的特性,從而形成感性的系統抽樣的概念與方法。這樣做既充分體現學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。
(二)新課講授
1、系統抽樣的.概念方法步驟
(學生閱讀課本上的內容,教師引導學生總結歸納得出“系統抽樣”的概念,并點明課題)
[設計意圖]經歷實例探究過程,學生對系統抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節新課題的學習便水到渠成。
2、典型例題精析
例1、某校高中三年級的300名學生已經編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統抽樣的方法進行抽取,并寫出過程。
(教師題意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程)
[設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統抽樣的方法步驟,達到學以致用的技能,培養“學數學,用數學”的意識。
例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統抽樣方法抽取所需的樣本。
[設計意圖]當 不是整數時,設置本題讓學生嘗試回答,并形成一般思路與方法。
(三) 練習鞏固
1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用 表示該名學生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統抽樣嗎?為什么?其樣本的代表性與公平性如何?
2、若按體重大小次序排成一路縱隊呢?
[設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統抽樣的優點與缺點。
(四)回顧小結
1、師生共同回顧系統抽樣的概念方法與步驟
2、與簡單隨機抽樣比較,系統抽樣適合怎樣的總體情況?
3、當 不是整數時,一般步驟是什么?此時樣本的公平性與代表性如何?
(五)布置作業
課本第61頁的練習第1,2,3題
設計意圖:課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。
高中數學說課稿2
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學情分析:
學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、經過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的本事。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法
本節采用以下教學方法:
1、類比:由數的加法運算類比向量的加法運算。
2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。
3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。
4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體此刻以下三個環節:
①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。
②由共線向量的加法總結出三角形法則適用于任意兩個向量的.相加,而三角形法則僅適用于不共線向量相加。
③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一齊才能用平行四邊形法則,不在一齊不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發揮了作用,加深了學生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一齊時,須把起點移到一齊,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
(3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一齊,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做。可是學生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則經過以上幾個環節的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:經過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。
(4)向量加法的運算律
①交換律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
②結合律:結合律是經過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結資料,使學生印象更深。
(1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
高中數學說課稿3
尊敬的各位考官:
大家好,我是今天的X號考生,今天我說課的題目是《對數函數及其性質》。
新課標指出:高中教育屬于基礎教育,具有基礎性,且具有多樣性與選擇性,使不同的學生在數學上得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
一、說教材
首先,我來談談我對教材的理解。
對數函數的概念及性質是人教A版必修1第二章的內容,本節課著重講授對數函數的概念、對數函數的圖象及性質。前面學生已經學習了函數的概念,也對指數函數的概念、圖象和性質進行了探究。之前的學習,為本節課的知識以及經驗都起到了鋪墊作用。從學生已有的知識經驗出發,引導學生發現問題、解決問題,為進一步綜合運用初等函數解決生產生活中以及科研中的問題起到了重要的怍用。
二、說學情
合理把握學情是上好一堂課的基礎,下面我來談談學生的.實際情況。
高中的學生掌握了一定的基礎知識以及解決問題的經驗,分析問題、解決問題以及動手能力較好。基于此,本節課注重引導學生動腦思考,更富有啟發性。引導學生思考、總結,充分參與教學過程,進一步發展學生發現問題、分析問題、解決問題的能力。
三、說教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
掌握對數函數的概念,會畫對數函數的圖象,根據對數函數的圖象理解對數函數的性質。
(二)過程與方法
通過對數函數性質的探究過程,體會從特殊到一般的方法以及數形結合的數學思想方法。
(三)情感態度價值觀
通過本節的學習,體驗數學的嚴謹性,養成細心觀察、認真分析、嚴謹思考的良好思維習慣。
四、說教學重難點
我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:對數函數的概念、圖象和性質。教學難點是:通過對數函數的圖象歸納對數函數的性質。
五、說教法和學法
現代教學理論認為,教學過程中,以學生為主體,教師為主導,教師是學習的組織者、引導者、合作者,教學的一切活動必須以強調學生的主動性、積極性為出發點。結合本節課的內容特點和學生的年齡特征,本節課我將采用講授法、練習法、小組討論法等教學方法。
六、說教學過程
在這節課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調動學生參與課堂的積極性、主動性。
高中數學說課稿4
各位老師:
大家好!我叫,來自湖南科技大學。我說課的題目是《輾轉相除法與更相減損術》,內容選自于新課程人教A版必修3第一章第三節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、學法分析和教學過程分析等五大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
在前面的兩節里,我們已經學習了一些簡單的算法,對算法已經有了一個初步的了解。
這節課的內容是繼續加深對算法的認識,體會算法的思想。這節課所學習的輾轉相除法與更相減損術是第三節我們所要學習的四種算法案例里的第一種。學生們通過本節課對中國古代數學中的算法案例——輾轉相除法與更相減損術學習,體會中國古代數學對世界數學發展的貢獻。
2.教學的重點和難點
重點:理解輾轉相除法與更相減損術求最大公約數的方法。
難點:把輾轉相除法與更相減損術的方法轉換成程序框圖與程序語言。
二、教學目標分析
1.知識與技能目標:
⑴理解輾轉相除法與更相減損術中蘊含的數學原理,并能根據這些原理進行算法分析。 ⑵基本能根據算法語句與程序框圖的知識設計完整的程序框圖并寫出算法程序。
2.過程與方法目標:
⑴對比用輾轉相除法與更相減損術求兩數的最大公約數的方法,比較它們在算法上的區別,并從程序的學習中體會數學的嚴謹。 ⑵領會數學算法與計算機處理的結合方式,初步掌握把數學算法轉化成計算機語言的一般步驟。
3.情感,態度和價值觀目標
⑴通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
⑵在學習古代數學家解決數學問題的方法的過程中培養嚴謹的邏輯思維能力,在利用算法解決數學問題的過程中培養理性的精神和動手實踐的能力。
⑶在合作學習的過程中體驗合作的愉快和成功的喜悅。
三、教學方法與手段分析
1.教學方法:充分發揮學生的主體作用和教師的主導作用,采用啟發式,并遵循循序漸進的教學原則。這有利于學生掌握從現象到本質,從已知到未知逐步形成概念的學習方法,有利于發展學生抽象思維能力和邏輯推理能力。
2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。
四、學法分析
在理解最大公約數的基礎上去發現輾轉相除法與更相減損術中的數學規律,并能模仿已經學過的程序框圖與算法語句設計出輾轉相除法與更相減損術的程序框圖與算法程序。
五、教學過程分析
㈠復習引入
1. 首先要回顧一下前面我們已經學習過的算法的三種表示方法:自然語言、程序框圖(三種邏輯結構)、程序語言(五種基本語句),這個是為了帶領學生們對之前學過的內容熟悉一下,也為下面的學習打下基礎。
2. 然后提出問題:在初中,我們已經學過求最大公約數的知識,你能求出18與30的公約數嗎?
3. 接著教師進一步提出問題,我們都是利用找公約數的方法來求最大公約數,如果公約數比較大而且根據我們的觀察又不能得到一些公約數,我們又應該怎樣求它們的最大公約數?比如求8251與6105的最大公約數?由此就引出我們這一堂課所要探討的內容。(板出課題)
㈡講授新課
1.首先我們學習的是輾轉相除法,為了更好地總結出輾轉相除法求最大公約數的基本步驟,我先給出了一個例題。
例1求兩個正數8251和6105的最大公約數。
在老師的'引導下,師生一同完成整個解題過程,然后分析這些步驟,得出輾轉相除法求最大公約數的基本步驟. 2.然后依照同樣的方法學習更相減損術求最大公約數的基本步驟 (這樣能夠鍛煉學生們的邏輯思維能力以及概括能力)
3.給出兩道練習,以及時鞏固剛剛學習的新知識。
練習 1利用輾轉相除法求兩數4081與20723的最大公約數(答案:53)
2 用更相減損術求兩個正數84與72的最大公約數。(答案:12)
4.思考:你能利用輾轉相除法和更相減損術試著設計程序求出上面兩道練習的答案嗎?然后
試著在計算機上運行程序。(這樣可以激發學生們的學習興趣,并且將學習的內容得到及時的應用)
㈢課堂小結
1.比較輾轉相除法與更相減損術的區別
2.對比分析輾轉相除法與更相減損術求最大公約數的計算方法及完整算法程序。
通過小結使學生們對知識有一個系統的認識,突出重點,抓住關鍵,培養概括能力。
㈣布置作業
習題1.3 A組 1
[設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。
高中數學說課稿5
尊敬的各位專家,評委:
上午好!
根據新課改的理論標準,我將從教材分析,學情分析,教學目標分析,學法、教法分析,教學過程分析,以及板書設計這六個方面來談談我對教材的理解和教學的設計。
一、教材分析
地位和作用:
《______________________》是北師大版高中數學必修二的第______章“__________”的第________節內容。
本節是在學習了________________________________________之后編排的。通過本節課的學習,既可以對_________________________________的知識進一步鞏固和深化,又可以為后面學習_________________________打下基礎,所以_________________是本章的重要內容。此外,《________________________》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。
二、學情分析
1、學生已熟悉掌握______
2、學生的認知規律,是由整體到局部,具體到抽象發展的。
3、學生思維活躍,積極性高,已初步形成對數學問題的合作探究能力
4、學生層次參差不齊,個體差異還比較明顯
三、教學目標分析
根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:
1、知識與技能:
2、過程與方法:通過___學習,體會__的思想,培養學生提出問題,分析問題,解決問題的能力,提高交流表達能力,提高獨立獲取知識的能力。
3、情感態度與價值觀:培養把握空間圖形的能力,欣賞空間圖形所反應的數學美(認識數學內容之間的內在聯系,加強數形結合的思想,形成正確的數學觀)。
教學重點:
難點:
四、學法、教法分析
(一)學法
首先,通過自學探究,培養學生的分析、歸納能力,提高學生合作學習的能力,學生課堂中體現自我,學會尋找問題的突破口,在探究中學會思考,在合作中學會推進,在觀察中學會比較,進而推進整個教學程序的展開。
其次,教學過程中,我想適時地根據學生的“最近發展區”搭建平臺,充分發揮“教師的主導作用和學生的主體地位相統一的教學規律”,
從學生原有的知識和能力出發,指導學生學會觀察、分析、歸納問題的能力。
學生只有不斷地解決問題、產生成就感的過程中,才能真正地提高學習的興趣,也只有這樣才能“學”有新“思”,“思”有新“得”。
(二)教法
數學教育家波利亞曾經說過:“學習任何知識的最佳途徑即是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的發展規律、性質和聯系。”根據學生的認知特點和知識水平,為落實重點、突破難點,本著以人為本,以學為中心的思想,本節課我將采用啟發式、合作探究的方式來進行教學。運用多媒體演示輔助教學的一種手段,以激發學生的求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現問題、分析問題和解決問題。
五、教學過程分析
1、創設情境,引入問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的.設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
2、發現問題,探究新知。
數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷
“數學化”、“再創造”的活動過程.
3、深入探究,加深理解。
有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
4、當堂訓練,鞏固提高。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
5、小結歸納,拓展深化。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。
6、作業設計
作業分為必做題和選做題。
針對學生能力和水平的差異,進行分層訓練,在所有學生獲得共同知識基礎和基本能力的同時,讓學有余力的學生將學習從課堂延伸到課外,獲得更大的能力提升,這體現新課改理念,也是因材施教的教學原則的具體運用。
現代數學教學觀和新課改要求教學能從“讓學生學會”向“讓學生會學”轉變,使數學教學真正成為數學活動的教學。所以,本節課我們不僅僅是單純的傳授知識,而更應該重視對數學方法的滲透。從熟悉的知識出發,學生自主探索、合作交流激發學生的學習興趣,突破難點,培養學生發現問題、解決問題的能力
六、板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;突出本節重難點,能指導教師的教學進程、引導學生探索知識,啟迪學生思維。
我的說課到此結束,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿6
各位老師:
大家好!我叫***,來自**。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。
2、教學的重點和難點
重點:概率的加法公式及其應用;事件的關系與運算。
難點:互斥事件與對立事件的區別與聯系
二、教學目標分析
1.知識與技能目標
⑴了解隨機事件間的基本關系與運算;
⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。
2、過程與方法:
⑴通過觀察、類比、歸納培養學生運用數學知識的綜合能力;
⑵通過學生自主探究,合作探究培養學生的動手探索的能力。
3、情感態度與價值觀:
通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的情趣。
三、教法分析
采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。
四、教學過程分析
1、創設情境,引入新課
在擲骰子的試驗中,我們可以定義許多事件,如:
c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜
c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜
c5=﹛出現的'點數=5﹜,c6=﹛出現的點數=6﹜
D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜
D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜
f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜
H=﹛出現的點數為奇數﹜
⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。
⑵從以上兩個關系學生不難發現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。
「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算
2、探究新知
㈠事件的關系與運算
⑴經過上面的思考,我們得出:
試驗的可能結果的全體←→全集
↓↓
每一個事件←→子集
這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過程中要注意幫助學生區分集合關系與事件關系之間的不同。
(例如:兩集合A∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發生,表示或者事件A發生,或者事件B發生。)
「設計意圖」為更好地理解互斥事件和對立事件打下基礎,
⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發生么?
②在擲骰子實驗中事件G和事件H是否一定有一個會發生?
「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區別與聯系。
⑶總結出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區別與聯系。
⑷練習:通過多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。
㈡概率的基本性質:
⑴回顧:頻率=頻數/試驗的次數
我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、
(通過對頻率的理解并結合前面投硬幣的實驗來總結出概率的基本性質,師生共同交流得出結果)
3、典型例題探究
例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環數大于7環;事件B:命中環數為10環;
事件c:命中環數小于6環;事件D:命中環數為6、7、8、9、10環、
分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:
(1)取到紅色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設計意圖」通過這兩道例題,進一步鞏固學生對本節課知識的掌握,并將所學知識應用到實際解決問題中去。
4、課堂小結
⑴理解事件的關系和運算
⑵掌握概率的基本性質
「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。
5、布置作業
習題3、1A1、3、4
「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。
五、板書設計
概率的基本性質
一、事件間的關系和運算
二、概率的基本性質
三、例1的板書區
例2的板書區
四、規律性質總結
高中數學說課稿7
一、說教材:
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學生對導數的概念已經有了充分的認識,本節課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發現、思維、運用形成完整概念. 通過本節的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。
教學難點:理解導數的幾何意義的本質內涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等.
二、說教學目標:
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。
過程與方法:
經歷切線定義的形成過程,培養學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解
通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態度與價值觀:
滲透逼近、數形結合、以直代曲等數學思想,激發學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統一美,意識到數學的應用價值
三、說教法與學法
對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;
學法:為了發揮學生的主觀能動性,提高學生的綜合能力,本節課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
四、說教學程序
1.創設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構建認知沖突。
學生活動——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的.常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。
問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學生發現并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學評價
1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業,對學生的學習效果評價.
4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;
5、本節課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統一,運動和靜止的統一,感受量變到質變的轉化。希望利用這節課滲透辨證法的思想精髓.
高中數學說課稿8
教學指導思想:新的教學理念下課堂教學已經是一個多維度多中心的整體。教師學生都是參與課堂的主體,而教學設計與實驗則是課堂的載體,它將調度師生共同參與教學活動,并在參與中盡量獲取知識與能力上的探討,共鳴與思維能力的升華與內化。教學應該揭示事物發展規律的呈現,注重學生把數學問題取之生活,用之生活。 本案將從現實中提取生活素材,引導學生在生活去發現問題,提煉猜想歸納,分析解決,得出事物或者問題發展規律;在此過程中學生得到的是自身發現能力的挖掘,建構模型的開發,問題解決能力的提高以及綜合創新與創造力的潛能訓練,這將有利于學生的素質和終身學習能力的培養。
一、教材分析
1、教材的地位和作用
算術平均數與幾何平均數是不等式這一章的核心,對于不等式的證明及利用均值不等式求最值等應用問題都起到工具性作用。通過本章的學習有利于學生對后面不等式的證明及前面函數的一些最值值域進一步研究,起到承前啟后的作用。
2、教學內容
本節課的主要教學內容是通過現實問題進行數學實驗猜想,構造數學模型,得到均值不等式;并通過在學習算術平均數與幾何平均數的定義基礎上,理解均值不等式的幾何解釋;與此同時在推理論證的基礎上學會應用。
3、教學目標
教學目標是基于對教材,教學大綱和學生學情的分析相應制定的。在新課程理念的指導下,更為關注學生的`合作交流能力的培養,關注學生探究問題的習慣和意識的培養。因此,結合本節課內容與實驗,設計本節課教學目標如下:
知識與技能:對于算術平均數與幾何平均數的理解以及定理的掌握;
過程與方法:通過情景設置提出問題,揭示課題,培養學生主動探究新知的習慣;引導學生通過問題設計,模型轉化,類比猜想實現定理的發現,體驗知識與規律的形成過程;通過模型對比,多個角度,多種方法求解,拓寬學生的思路,優化學生的思維方式,提高學生綜合創新與創造能力。
情感態度價值觀: 培養學生生活問題數學化,并注重運用數學解決生活中實際問題的習慣,有利于數學生活化,大眾化;同時通過學生自身的探索研究領略獲取新知的喜悅。
教學重點: 算術平均數與幾何平均數的理解以及定理的掌握;
教學難點:算術平均數與幾何平均數以及定理發現探索過程的構建及應用;
教學關鍵:學生對于實驗的實踐及函數模型的構建。
教學模式:探究式 合作式
二、學情分析
學生已經掌握了不等式的基本性質,高中的學生已經具有較好的邏輯思維能力,因此他們希望能夠自己探索,發現問題和解決問題。現在經歷課改的學生不僅僅停留在接受學習的框框內,他們更需要充滿活力與創造發現的課堂。課堂實驗可能存在問題:對EXEL軟件不夠熟練。對于模型構造思路不夠清晰。
三、教法分析
不同于傳統的講授課,基于數學實驗的教學實踐課,教師的教應有瞻前性,應該在實驗課前讓學生對于軟件的應用有充分的準備,并進行分組討論得到數學模型。依據前蘇聯教育家贊可夫"問題教學法"確定本堂課所采用的教學方法是"生活中發現問題,實驗中分析問題,設計中解決問題,總結問題,論證后延拓問題"五環節教學方法,運用這種教學方法能更好地使學生經歷實驗的發生,發展和"再創造"的全過程,主動地吸收新知識的精髓。
四、學法指導
新的教學理念下課堂教學已經是一個多維度多中心的整體。教師學生都是參與課堂的主體,而教學設計與實驗則是課堂的載體,它將調度師生共同參與教學活動,并在參與中盡量獲取知識與能力上的探討,共鳴與思維能力的升華與內化。教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此,在教學中要不斷指導學生學會學習。根據數學實驗課的教學特點,這節課主要是教給學生"動手做,動腦想;多訓練,多實踐。"的研討式學習方法。這樣做,增加了學生主動參與的機會,增強了參與意識,教給學生獲取知識的途徑,思考問題的方法,使學生真正成為教學的主體。通過這樣使學生"學"有新"思","思"有所"得","練"有所"獲"。學生才會學習數學中體驗發現的成就感,從而提高學生學習數學的興趣;在此過程中,學生學會了交流合作,并學以致用,才能適應素質教育下培養"創新型"人才的需要。
五、實驗內容與實驗程序:
問題:元旦晚會我們學校即將舉行游園活動,每個班級有一條20米長的紅絲帶在燈光球場圍成一矩形的場地活動,請問大家應該怎么圍才能使我們班級的場地面積最大
1問題提煉:(用數學語言表達)
2實驗步驟:
A 請根據題目要求選擇整數長度為邊,按照制圖方法繪制5個矩形,并比較面積
B 把上面的矩形按照邊長與面積的不同列表歸納
長度(m)
寬度 (m)
面積 ()
C 根據以上表格數據,請用exel軟件作出柱狀圖,并思考以下問題:
(1)在邊長變化過程中,面積的大小變化情況與趨勢
(2)由這種趨勢請同學們自己猜想總結一個結論。
3 實驗的感言與進一步構造數學模型的思考。
六、教學流程
1,生活問題創設情景:通過生活問題設置情景并構建實驗
2,構建模型解決問題:學生通過合作討論構建函數及不等式解決問題并發現均值不等式
3,定理總結結論表述:用數學語言表達均值不等式并用文字語言總結陳述
4,定理論證課堂練習:用幾何與代數方法分別論證結論并進行課堂練習
5,學習感言教學小結:由學生發表學習感言,老師總結本堂課的學習過程與學習方法。學習過程:發現問題――實驗猜想――構建模型――發現規律――論證再運用;學習方法:協作探討,自主實驗,猜想證明,發現應用。
七、教學反饋評價
本節課利用生活問題設計數學實驗,是現階段新課程改革的新試點,是學生進行數學研究性學習與自主學習的一重要手段與途徑。
本節課通過生活問題的合作交流探討,學生學習方式有了新的改變;在實驗的構造過程,學生的自主性,實踐性,創造性得到鍛煉與提高;在實驗過程中學生的分工合作精神更是得到充分的考驗與體現,學生學會了合作與分享;通過對數學模型的構建,學生更加體會進行自主研究,合作學習的樂趣,同時培養了學生創新精神與發現能力。
當然本節課的一個突出點在于從書本某一個知識作為切入點構造生活問題,設計數學實驗,創造性地對教材進行再利用,再編改。使得學生在課堂,課外自主學習與接受知識的方法途徑更加多樣,參與課堂的方式更加深入,更容易通過自己探究體驗發現的樂趣。這是傳統教學所沒辦法達到的。
高中數學說課稿9
各位同仁,各位專家:
我說課的課題是《任意角的三角函數》,內容取自蘇教版高中實驗教科書《數學》第四冊 第1。2節
先對教材進行分析
教學內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數這一基本概念。所以這個內容要認真探討教材,精心設計過程。
教學重點:任意角三角函數的定義
教學難點:正確理解三角函數可以看作以實數為自變量的函數、初中用邊長比值來定義轉變為坐標系下用坐標比值定義的觀念的轉換以及坐標定義的合理性的理解;
學情分析:
學生已經掌握的內容,學生學習能力
1。初中學生已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的知識和求法。
2。我們南山區經過多年的初中課改,學生已經具備較強的自學能力,多數同學對數學的學習有相當的興趣和積極性。
3。在探究問題的能力,合作交流的意識等方面發展不夠均衡,尚有待加強必須在老師一定的指導下才能進行
針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下
知識目標:
(1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,
能力目標:
(1)理解并掌握任意角的三角函數的定義;
(2)正確理解三角函數是以實數為自變量的函數;
(3)通過對定義域,三角函數值的符號的推導,提高學生分析探究解決問題的'能力。
德育目標:
(1)學習轉化的思想,(2)培養學生嚴謹治學、一絲不茍的科學精神;
針對學生實際情況為達到教學目標須精心設計教學方法
教法學法:溫故知新,逐步拓展
(1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發展新知識,形成新的概念;
(2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
(1)提高直觀性增強趣味性。
教學過程分析
總體來說, 由舊及新,由易及難,
逐步加強,逐步推進
先由初中的直角三角形中銳角三角函數的定義
過度到直角坐標系中銳角三角函數的定義
再發展到直角坐標系中任意角三角函數的定義
給定定義后通過應用定義又逐步發現新知識拓展完善定義。
具體教學過程安排
引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學生發現B的坐標和邊長的關系。進一步啟發他們發現由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數的定義發展到用終邊上任一點的坐標來表示, 從而銳角三角函數可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數,便考慮放在直角坐標中進行合理進行定義了
從而得到
知識點一:任意一個角的三角函數的定義
提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經過P(2,—3),求角A的三個三角函數值
(此題由學生自己分析獨立動手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數值
結合變式我們發現三個三角函數值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數的定義,而我們又一直稱呼為三角函數,
提出問題:這三個新的定義確實問是函數嗎?為什么?
從而引出函數極其定義域
由學生分析討論,得出結論
知識點二:三個三角函數的定義域
同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數
例題變式2, 已知角A 的終邊經過P(—2a,—3a)( a不為0),求角A的三個三角函數值
解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數值的正負與角所在象限有關,從而導出第三個知識點
知識點三:三角函數值的正負與角所在象限的關系
由學生推出結論,教師總結符號記憶方法,便于學生記憶
例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業和課外作業以加強知識的記憶和理解
課堂作業P16 1,2,4
(學生演板,后集體討論修訂答案同桌討論,由學生回答答案)
課后分層作業(有利于全體學生的發展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書設計(見PPT)
高中數學說課稿10
尊敬的各位考官
大家好,我是今天的X號考生,今天我說課的題目是《指數函數及其性質》。
新課標指出:高中數學課程對于認識數學與自然界、數學與人類社會的關系,認識數學的科學價值、文化價值,提高提出問題、分析和解決問題的能力,形成理性思維,發展智力和創新意識具有基礎性的作用。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
一、說教材
首先談談我對教材的理解。本節課選自人教A版高中數學必修1,主要講解的內容是指數函數的概念以及它的'圖象和性質。之前學生已經學習了指數的運算以及指數的相關性質,為本節課奠定了一定的基礎,并且之前學習函數性質的方法也為本節課的探究提供了幫助。本節課的學習,為以后研究函數的性質,以及解決生活中的問題起到非常關鍵性的作用。所以,本節課的學習對于學生來說至關重要。
二、說學情
接下來談談學生的實際情況。高中一年級的學生雖然剛剛步入高中,需要適當地適應高中的教學方式,但是學生的觀察能力、總結能力、歸納能力、類比能力、抽象等能力已經發展比較成熟。所以教學中,可以將更多的活動交給學生進行探究,還可以進行自主學習,提高各方面的能力。
三、說教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
理解指數函數的概念和意義,能畫出具體指數函數的圖象,探索并理解指數函數的單調性和特殊點。
(二)過程與方法
在學習的過程中,體會研究具體函數及其性質的過程和方法,體會從具體到一般的過程,學會數形結合的方法。
(三)情感、態度與價值觀
感受數學與現實生活及其他學科的聯系,感受數學的重要性。
四、說教學重難點
我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:指數函數的概念和性質。教學難點是:用數形結合的方法從具體到一般地探索、概括指數函數的性質。
五、說教法學法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者、合作者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,我將采用講授法、練習法、自主探究等教學方法。
六、說教學過程
下面我將重點談談我對教學過程的設計。
(一)新課導入
接下來引導學生類比之前研究函數的方法,明確函數圖象在研究性質中起到非常重要的作用,利用數形結合思想研究函數的性質。
以上過程中充分體現了學生是學習的主體,教師是組織者、引導者、合作者。通過這樣的教學,不僅能夠讓學生有一個輕松愉快的學習氛圍,還能夠幫助學生提高發現問題、分析問題、解決問題等能力。
高中數學說課稿11
一、教材分析:
1、教材的地位與作用。
本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的`真實的發現過程。
2、歸納概括
學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
3、舉例應用
⑴引導學生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發展
⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
⑵讓學生設計活動資料,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新本事。
高中數學說課稿12
尊敬的各位專家、評委:
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的'結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.
(3)自我嘗試,初步應用。
有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本
節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
我設計了以下作業:
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝!
高中數學說課稿13
我擔任高職單招輔導班的數學科教學,可以說每節課都是復習課。今天,我說的是復習課這種課型。內容是《函數》這一章中的“反函數”這一節。
一、教材分析:
反函數這一節在《函數》這章中是一個難點,篇幅不多(課時少),在高考考綱中的要求也比較簡單。但我個人這樣認為,復習課應盡量把與本節內容相關的新舊知識系統地串在一起,所以在備課時要找一條能把知識點連在一起的線索。這線索就是函數的三要素:
(一)教學目標:
①使學生掌握反函數的概念并能求出簡單函數的反函數(考綱要求)。
②互為反函數的兩個函數具有的性質,以及這些性質在解題中的運用。
③通過知識的系統性,培養學生的逆向思維能力和邏輯思維能力。
(二)重點、難點:
①重點:使學生能求出簡單函數的反函數。
②難點:反函數概念的理解。
二、教學方法:
整節課采用傳統的講解法。
首先要認識反函數應先有函數的概念這知識,用例子來說明反函數的求法以及讓學生來完成一題沒有反函數的函數,從而得出一個不滿足函數定義的關系式,通過分析來得到一個函數具有反函數的條件。這里是用“欲擒故縱”的手法,加深對概念的理解,也是突破難點的關鍵。
三、學生學習方法:
學生認識了反函數的求法(步驟),在老師的引導下得出三個結論,并運用這些結論來解題。希望能達到提高學生性質的解題能力和思維能力的目標。
四、教學過程:
(一)溫故:函數的概念、三要素
(二)新課:例1:求y=2x+1的反函數
解:
即(x∈R)
注意步驟,新關系式滿足從R到R是一個函數關系式。
互這反函數的特點:
①運算互逆;②順序倒置
例2:y=x2(x∈R)用y的'代數表示x
得x=這x不是y的函數,不滿足函數定義
若對,y=x2的定義域改為x≥0
可得x=,即y=(x≥0)
當逆對應滿足函數定義,原函數才存在反函數。
得到結論①互為反函數的定義域、值域交換
即
分別在同一坐標上畫出以上互為反函數的圖象
得到結論②圖象關于y=x對稱
③單調性一致
(三)練習
1、求的反函數,并求出反函數的值域。
2、函數的圖象關于對稱,求a的值。
講評:略。
(四)小結:
(五)布置作業:
高中數學說課稿14
一、教學目標
(1)知識與能力目標:學習橢圓的定義,掌握橢圓標準方程的兩種形式及其推
導過程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。
(2)過程與方法目標:通過對橢圓概念的引入教學,培養學生的觀察能力和探
索能力;通過對橢圓標準方程的推導,使學生進一步掌握求曲線方程的一般方法,提高學生運用坐標法解決幾何問題的能力,并滲透數形結合和等價轉化的數學思想方法。
(3)情感、態度與價值觀目標:通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識,培養學生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。
二、教學重點、難點
(1)教學重點:橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線方程。
(2)教學難點:橢圓標準方程的建立和推導。
三、教學過程
(一)創設情境,引入概念
1、動畫演示,描繪出橢圓軌跡圖形。
2、實驗演示。
思考:橢圓是滿足什么條件的點的軌跡呢?
(二)實驗探究,形成概念
1、動手實驗:學生分組動手畫出橢圓。
實驗探究:
保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?
2、概括橢圓定義
引導學生概括橢圓定義橢圓定義:平面內與兩個定點距離的和等于常數(大于)的點的軌跡叫橢圓。
教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。
思考:焦點為的橢圓上任一點M,有什么性質?
令橢圓上任一點M,則有
(三)研討探究,推導方程
1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?
2、研討探究
問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點M,有
,嘗試推導橢圓的方程。
思考:如何建立坐標系,使求出的方程更為簡單?
將各組學生的討論方案歸納起來評議,選定以下兩種方案,由各組學生自己完成設點、列式、化簡。
方案一方案二
按方案一建立坐標系,師生研討探究得到橢圓標準方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標系,由學生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。
(四)歸納概括,方程特征
1、觀察橢圓圖形及其標準方程,師生共同總結歸納
(1)橢圓標準方程對應的橢圓中心在原點,以焦點所在軸為坐標軸;
(2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;
(3)橢圓標準方程中三個參數a,b,c關系:;
(4)橢圓焦點的位置由標準方程中分母的大小確定;
(5)求橢圓標準方程時,可運用待定系數法求出a,b的值。
2、在歸納總結的基礎上,填下表
標準方程
圖形a,b,c關系焦點坐標焦點位置
在x軸上
在y軸上
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標準方程
(1)兩個焦點的坐標分別是,橢圓上一點P到兩焦點距離和等于10。
(2)兩焦點坐標分別是,并且橢圓經過點。
例2、(1)若橢圓標準方程為及焦點坐標。
(2)若橢圓經過兩點求橢圓標準方程。
(3)若橢圓的一個焦點是,則k的值為。
(A)(B)8(C)(D)32
例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線段,求線段中點M的軌跡。
(六)變式訓練,探索創新
1、寫出適合下列條件的橢圓標準方程
(1),焦點在x軸上;
(2)焦點在x軸上,焦距等于4,并且經過點P;
2、若方程表示焦點在y軸上的橢圓,則k的范圍。
3、已知B,C是兩個定點,周長為16,求頂點A的軌跡方程。
4、已知橢圓的焦距相等,求實數m的值。
5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。
6、已知P是橢圓上一點,其中為其焦點且,求三解形面積。
(七)小結歸納,提高認識
師生共同歸納本節所學內容、知識規律以及所學的數學思想和方法。
(八)作業訓練,鞏固提高
課本第96頁習題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個焦點,AB是過的弦,則周長是。
(A)2a(B)4a(C)8a(D)2a2b
2、的兩個頂點A,B的坐標分別是邊AC,BC所在直線的斜
率之積等于,求頂點C的'軌跡方程。
2、與圓外切,同時與圓內切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?
教學設計說明
橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。本節課內容的學習能很好地在課堂教學中展現新課程的理念,主要采用學生自主探究學習的方式,使培養學生的探索精神和創新能力的教學思想貫穿于本節課教學設計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創設生動而直觀的情境,使學生親身體會橢圓與生活聯系,有助于激發學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經歷橢圓概念形成的數學化過程,有利于培養學生觀察分析、抽象概括的能力。
橢圓方程的化簡是學生從未經歷的問題,方程的推導過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數學探究能力,培養學生獨立主動獲取知識的能力。
設計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調動、活躍學生的思維,發展學生數學思維能力,讓學生在解決問題中發展學生的數學應用意識和創新能力,同時培養學生大膽實踐、勇于探索的精神,開闊學生知識應用視野。
高中數學說課稿15
一、教材分析
1.從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養.
2.從學生認知角度看
從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點、難點
教學重點:公式的推導、公式的特點和公式的運用.
教學難點:公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.
二、目標分析
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎
上能初步應用公式解決與之有關的問題.
過程與方法目標:
通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉
化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態度價值觀:
通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之
間等價轉化和理論聯系實際的辯證唯物主義觀點.
三、過程分析
學生是認知的`主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1.創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來后,國王大吃一驚.為什么呢?
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性.故事內容緊扣本節課的主題與重點.
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發現?
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機.
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.
3.類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.
對不對?這里的q能不能等于1?等比數列中的公比能不能為
1q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力.這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
【高中數學說課稿】相關文章:
高中數學的說課稿06-17
高中數學說課稿01-10
高中數學說課稿05-20
高中數學說課稿【精華】06-13
(薦)高中數學說課稿06-07
高中數學說課稿15篇01-11
高中數學說課稿(15篇)01-11
高中數學說課稿4篇01-12
高中數學說課稿通用(15篇)05-20