您的位置:群走網>教學資源>說課稿>《三角形內角和》說課稿
《三角形內角和》說課稿
更新時間:2024-06-21 11:46:13
  • 相關推薦
(優秀)《三角形內角和》說課稿

  在教學工作者實際的教學活動中,通常會被要求編寫說課稿,是說課取得成功的前提。那么什么樣的說課稿才是好的呢?下面是小編幫大家整理的《三角形內角和》說課稿,僅供參考,大家一起來看看吧。

《三角形內角和》說課稿1

  一、 說教材

  “三角形的內角和”是九年義務教育六年制小學四年級下冊第六單元第3節的內容。“三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。經過第一學段以及本單元的學習,學生已經具備一定的關于三角形的認識的直接經驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的概念,打下了堅實的基礎。

  為方便教師領會教材編寫的意圖與理念,開展有效的教學,更好的發展學生的空間觀念,培養學生的各種能力,教材在呈現教學內容時,不但重視體現知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現在:概念的形成不直接給出結論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發現、討論、交流獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數學活動經驗,發展空間觀念和推理能力,不斷提高自己的思維水平。基于對教材以上的認識及課程標準的要求,我擬定本節課的教學目標為:

  1、知識目標:

  知道三角形內角和是180°。

  2、 能力目標:

  ①通過學生猜、測、拼、折、觀察等活動,培養學生探索、發現能力、觀察能力和動手操作能力。

  ②能運用三角形內角和是180°這一規律解決實際問題。

  3、情感目標:

  ①讓學生在探索活動中產生對數學的好奇心,發展學生的空間觀念;

  ②體驗探索的樂趣和成功的快樂,增強學好數學的信心。

  教學重點:

  三角形內角和是180°的實際應用。

  教學難點:

  探索三角形的內角和是180°

  二、說教法

  新課程標準的基本理念就是要讓學生“人人學有價值的數學”。強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。要激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態度,促使學生向著預定的目標發展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養學生的發散思維,進一步激發學生學習數學的熱情。

  三、說學法

  學法是學生再生知識的法寶。為了使在整節課的探索活動中,我的設計有獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式,同時也培養了學生探索能力和創新精神。

  “將課堂還給學生,讓課堂煥發生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創造者,落實學生的主體地位,促進學生的自主學習和探究。”秉著這樣的指導思想,在整個教學設計上力求充分體現“以學生發展為本”教育理念,將教學思路擬定為“談話激趣設疑導入—— 猜想——驗證{自主探究}——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。

  四、說教學程序

  1、 談話激趣設疑導入:

  教學的藝術不在于傳授知識,而在于喚醒、激發和鼓勵。剛開始上課,我就以兩個三角形的爭論為的知識“三為切入點,讓學生來評理,當一回公正的法官{激趣},你認為哪一個三角形的內角和大呢?用什么方法知道誰大誰小呢{設疑}?這樣,我在很短的時間內最大限度的激發學生探究數學的愿望和興趣,為學生進一步學習打好基礎。

  2、 猜想:

  學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時我讓學生大膽猜想,形成統一的認識,使后邊的探索和驗證活動有了明確的目標。

  3、 驗證{自主探索}:

  學生形成統一的猜想{即三角形的內角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數學探究活動{既驗證三角形的內角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——折一折——看一看。

  4、 鞏固內化:

  俗話說的好:“熟能生巧”。數學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數學的'思考融入不同層次的練習之中,很好的發揮練習的作用,如:設計讓學生用所學的知識說一說三角形內角和與三角形的大小有關系嗎,又如:師說兩個角度,學生求第三個角,從中培養學生應用意識和解決問題的能力;讓學生判斷有兩個直角三角形拼成的三角形的內角和的度數,使學生在圖形變化的過程中掌握知識,培養思維的靈活性,從中發展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數學思維得到不斷的發展。

  5、 拓展創新:

  數學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我設計了這樣一道題目:學了三角形的內角和后,你知道五邊形、六邊形的內角和是多少度嗎?請小組合作選擇一個圖形求內角和。這道題通過對本節課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養學生應用知識的能力,更能培養學生的創新意識和創新精神。

  總之,本節課教學活動中我力求充分體現以下特點:以學生發展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現了層次性,知識技能得于落實和發展。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。

《三角形內角和》說課稿2

  一、說教材

  1、我說課的內容是《九年義務教育人教版》第八冊的《三角形的內角和》。

  2、教材簡析

  三角形在平面圖形中是簡單的,也是最基本的多邊形,這部分內容是在學生對三角形已經有了直觀的認識,并且對三角形的特性及分類有了一定的了解的基礎上進行學習的。通過這部分內容的學習,培養學生的實際操作能力、觀察能力、小組合作交流能力、語言表達能力以及抽象的思維能力,為以后學習多邊形打好基礎。

  3、教學目標

  根據教材的內容以及學生的知識現狀和年齡心理特點,我制定以下教學目標。

  (1)知識目標:從實際出發,通過互動學習初步感知三角形的內角和是180度,在此基礎上,用實驗的方法加以探究。

  (2)能力目標:通過教學活動,培養學生動手操作、歸納推理以及抽象概括的能力。

  (3)情感目標:使學生經歷探究的過程,體會與他人合作交流的樂趣,學會用數學的眼光去發現問題、解決問題。感受到數學的價值。

  4、教學重點與難點。

  《三角形內角和》的教學是學生從直觀形象到抽象掌握的過程,即學生從感性認識到理性認識的升華,對學生發展類推的能力有著重要的作用。因此,我認為學生通過操作,自主探究三角形的內角和是180度是本節課的重點;采用多種途徑證明三角形的內角和等于180度是本節課的難點。

  5、教學準備

  為了更好的達到教學目標,突出重點,突破難點,我準備以下教具和學具:課件、不同類型的三角形紙片、量角器、剪刀、膠水。

  二、說教法學法

  根據新課程教材的特點和學生實際情況,教學中以直觀教學為主。運用動手觀察,分組討論等多種方法,采用現代化手段結合教材,讓學生在“想一想”、“做一做”、“說一說”的自主探索過程發揮學生相互之間的作用,讓學生自己動腦、動手、動口中促進思維的發展。培養學生的動手操作能力、語言表達能力和自學能力。

  本節課在學生學習方法的引導上盡量體現:

  ①在具體的情景中,讓學生親身經歷發現問題、提出問題、解決問題的過程,體驗成功的快樂。

  ②通過師生、生生互動,探究、合作交流,完善自己的想法,形成自己獨特的學習方法。

  ③通過靈活、有趣和富有創意的練習,提高學生解決問題的能力。

  三、學生情況分析

  學生在日常生活中接觸了很多大小不同的角,但對于三角形內角和等于180度的知識,生活中很少接觸,顯得比較抽象,對于四年級的學生抽象思維雖然有一定的發展,但依然以形象具體思維為主,分析、綜合、歸納、概括能力較弱,有待進一步培養。

  四、說教學流程

  為了達到本節課的教學目標,我這樣設計教學流程:

  1、設疑導入。

  為了激起學生求知的`欲望,再根據本課題的特點和四年級學生心理的特點,我采取了直接設疑導入。具體步驟如下:

  (1)讓學生匯報三角尺各個內角的度數,并計算出每個三角尺的內角和是多少度。

  (2)提出問題:當學生答出三角尺的內角和度數之后,我問:所有的三角形的內角和都是180度嗎?學生討論之后引出課題。

  2、動手操作,自主探究。

  為創新學生的思維,張揚學生的個性,學生動手量、剪、拼等活動貫穿于整個課堂。我根據四年級學生的心理特點設計了這一環節,其目的是:讓學生在活動過程中形成問題意識,從而展開想象,培養學生的問題意識。具體做法是:(1)先讓學生思考如何驗證三角形的內角和是180度,然后通過討論交流得到幾種驗證方法。(2)讓學生利用量角器量出學具三角形紙片的各個內角的度數,再求出三角形的內角和,初步感知三角形的內角和等于180度。(3)讓學生利用剪拼的方法感知三角形的三個內角拼在一起是一個平角,從而得到結論。

  3、鞏固新知

  本環節我設計了不同類型的習題。有操作題,計算題,畫圖題,拼角題等等。其目的是:通過這一環節,讓學生掌握、理解三角形的內角和等于180度,并把所學知識回歸于生活實踐,從而達到情感、態度、價值觀這一教學目標的實現。

  五、板書設計

  板書是課堂教學語言的一種表現形式,它具有啟發性、指導性和應用性。精巧的板書設計有“引”和“導”的功能,“引”是引學生之思,“導”是導學生之路。

《三角形內角和》說課稿3

各位評委、各位同行朋友:

  大家上午好!

  “三角形的內角和”是九年義務教育六年制新課程標準教科書第八冊第二單元——認識圖形中第三節的內容。

  一、說教材和新課標

  (包括教材、新課標和教學目標)

  1、在學習本節內容——探索與發現三角形的內角和之前,學生已經掌握了有關角的分類和三角形的分類知識,知道平角的度數是180°,并且能夠通過量角器測量角的大小。教材編排了通過小組合作學習形式,即每人隨意畫一個三角形,通過小組成員的分工與合作,求出每個同學畫的三角形的內角和的度數。然后與學生共同分析各活動小組的“三角形內角和”的記錄情況,進而歸納出三角形的內角和等于

  180°。為證明這個結論的正確性和加深學生的認識,教材還編排了“拼一拼”(即把三角形的三個角撕下來拼在一起)和“折一折”(即先把一個長方形折成一個三角形,再把這個三角形的三個角折成一個平角)這兩個實踐與操作環節。本節教材的最后編排了已在三角形中兩個角的度數求第三個角的度數的內容。

  2、新課程改革的重要目標就是要改變學生學習數學的方式,其中一個非常重大的變化就是由過去注重教師“怎么教”到現在更重視學生“怎么學”,因此我認為:學生“怎么學”比“學什么”更重要。一個學生如果掌握了“怎么學”,就如同擁有了點石成金的仙人指,這才是他一身中最可寶貴的、無窮無盡的財富。基于此,我們的教學目的`就不言可愈了。

  基于新課標的要求,本課的教學目標是:

  1、通過小組分工合作學習與親身體念,學習和探索三角形的內角和等于180°;

  2、利用三角形的內角和等于180°這個已知條件進行有關角的計算;

  3、培養學生自主學習。

  二、說教法和學法

  在本課題的教法和學法主要體現在以下兩方面:

  1、突出學生作為學習主體的作用

  學生是學習的主體,教學中放手讓學生去嘗試、去思考,讓他們親身感受知識的來龍去脈、獲取知識的認知規律。作為教師,應以學生的發展為立足點,以自主探索為主線,以求異創新為宗旨,采取多媒體輔助教學,盡可能地為學生創設參與的情境,充分調動學生學習的積極性,強化學生的主體地位,不斷培養學生自學能力。根據本節課教材內容和編排特點,按照學生認知規律,遵循教師為主導,學生為主體的指導思想,我主要采取操作嘗試、觀察對比、發現歸納等方法進行教學。

  2、讓學生在創造中學習,在學習中創造

  學會在具體情境中發現問題、提出問題并初步解決問題,體念探索的成功、學習的快樂。通過動手操作、獨立思考和小組合作交流活動,完善自己的想法,提高自己的技能;通過動手操作、觀察辨析、自主探究,讓學生全面、全程地參與到每個教學環節。鼓勵學生大膽想象,通過自己的思考和探究,努力嘗試去發現和創造,培養他們的創造精神。這也正是“新課標”賦予我們每一個教學工作者的神圣使命!

  三、說教學過程

  為了激發學生的學習興趣,我事先邀請兩個學生表演兩個大小相去甚遠的三角形的爭辯:都說自己的內角和較大,用夸張搞怪的動作爭得唾沫星四濺,以期引起學生的注意力,進而提出問題:到底誰說的正確呢?以“請你做裁判”為名引入課題。

  接著進行小組分工合作學習活動,在小組內,每個同學畫一個任意三角形,然后分工量角度、登記與求和,并對這些三角形的內角和的度數進行分析、歸納,得出三角形的內角和大約是180°左右的初步結論。接著由教師引導學生綜合分析歸納各活動小組的計算結果,得出任何三角形的內角和都等于180°的結論。

  為證明這個論斷的正確性和加深學生的認識,教師接著組織學生進行“拼一拼”(即把三角形的三個角撕下來拼在一起拼成一個平角)和“折一折”(即先把一個長方形折成一個三角形,再把這個三角形的三個角折成一個平角)這兩個實踐與操作活動,使學生更進一步確信:三角形的內角和等于180°。同時向學生灌輸數學王國里有許許多多的規律和奧秘,有待同學們去努力探索,以激發學生的學習興趣。

  接下來是知識的應用:已知三角形中兩個角的度數求第三個角的度數以及其他的相關知識和練習。

  四、教學演示

  1、兩個學生表演爭論自己的三角形內角和大些,以讓大家做裁判為名引入課題;

  2、指導小組合作學習活動,然后綜合歸納:三角形的內角和等于180°;

  3、引導學生實踐操作:拼一拼、折一折(以證明三角形的內角和確實等于180°);

  4、練習:判斷題

  ①鈍角三角形的內角和大于直角三角形的內角和。

  ②把一個三角形剪成兩個三角形后,每個三角形的度數不再等于180°了。

  ③直角三角形中的兩個銳角和等于90°

  5、學習求三角形中角的度數的方法……

《三角形內角和》說課稿4

各位評委、老師大家好:

  我說課的題目是《三角形內角和》,內容選自人教版九年義務教育七年級下冊第七章第二節第一課時。

  一、設計理念:

  數學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。

  應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。

  我認為教師角色的轉變一定會促進學生的發展、促進教育的長足發展,在未來的教學過程里,教師要做的是:幫助學生決定適當的學習目標,并確認和協調達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創造豐富的教學情境,培養學生的學習興趣,充分調動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰,適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發現、形成。

  二、教材分析與處理:

  三角形的內角和定理揭示了組成三角形的三個角的數量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內角和定理也是幾何問題代數化的體現。

  三、學生分析:

  處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。

  四、教學目標:

  1.知識目標:在情境教學中,通過探索與交流,逐步發現“三角形內角和定理”,使學生親身經歷知識的發生過程,并能進行簡單應用。能夠探索具體問題中的數量關系和變化規律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的.反思中,獲得解決問題的經驗,進行富有個性的學習。

  2.能力目標:通過拼圖實踐、問題思考、合作探索、組內及組間交流,培養學生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

  4.情感、態度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數學,遇到困難不避讓,在數學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

  五、重難點的確立:

  1.重點:三角形的內角和定理探究與證明。

  2.難點:三角形的內角和定理的證明方法(添加輔助線)的討論

  六、教法、學法和教學手段:

  采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

  采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

  七、教學過程設計:

  (一)、創設情境,懸念引入

  一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關鍵。一個成功的引入,是讓學生感覺到他熟知的生活,可使學生迅速投入到課堂中來,對知識在最短的時間內產生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節課你便能夠回答這個問題了。從而引入新課。

  (二)、探索新知

  1.動手實踐,嘗試發現:要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發現怎樣的現象?有的學生會發現,三者拼成一個平角。此時讓學生互相觀察拼圖,驗證結果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結分類,將所拼圖形分為∠A、∠B分別在∠C同側和兩側兩種情況。對有合作精神的小組給與表揚。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師提問,從活動中你有怎樣的發現?采取組內交流的方式,產生思維碰撞。此時我走到學生中去,對有困難的小組給與適當的引導。之后由學生匯報組內的發現。即三角形三個內角的和等于180度。

  3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生獨立完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環節應留給學生充分的思考、討論、發現、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關系,為繼續學習奠定基礎。合作探究后,匯報證明方法,注意規范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創造條件,以達到證明的目的。

  4.學以致用,反饋練習

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數?

  解:∵∠A+∠B+∠C=180°(三角形內角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數?

  解:設∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數?(2)若BD是AC邊上的高,∠DBC的度數?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

  通過這組練習滲透把圖形簡單化的思想,繼續滲透統一思想,用代數方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習是三角形內角和定理與平角定義及角平分線等知識的綜合應用.能較好的培養學生的分析問題、解決問題的能力,有助于獲得一些經驗。

  6.思維拓展,開放發散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關系。

  本題旨在激發學生獨立思考和創新意識,培養創新精神和實踐能力,發展個性思維。

  (三)、歸納總結,同化順應

  1.學生談體會

  2.教師總結,出示本節知識要點

  3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  (四)、作業:

  1、必做題:習題3.1第10、11、12題

  2、選做題:習題3.1第13、14題

  (五)、板書設計

  三角形內角和

  學生拼圖展示

  已知:

  求證:

  證明:

  開放題:

《三角形內角和》說課稿5

  ★教材與學情分析

  《三角形的內角和》是人教版四年級下冊的教學內容,這一內容是三角形的一個重要性質。它有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。經過第一學段以及本單元的學習,學生已具備了一些相應的三角形知識和技能,初步的動手操作能力、主動探究能力以及合作學習的習慣,這為感受、理解、抽象“三角形的內角和”的概念,打下了堅實的基礎。

  ★教學目標、重難點

  以建構主義理論以及有效教學的理念為指導,結合對教材的認識以及學生的情況分析我將本節課的教學目標定為下列幾點:

  1、知識與技能目標:通過量、剪、拼等活動發現、驗證三角形的內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、過程與方法目標:通過對三角形的內角和轉化為平角的探究與體驗,滲透“轉化”、“變中找不變”的數學思想。

  3、情感與態度目標:體驗成功的喜悅,激發主動學習數學的興趣。

  教學重點:經歷“三角形的內角和是180°”這一知識的形成、發展和應用的全過程。

  教學難點:驗證“三角形的內角和是180°”以及對這一知識規律的靈活運用。

  學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形(可以畫在紙上,也可以剪下來)

  ★教學環節

  下面向大家重點介紹我對這節課教學環節的.設計:

  建構主義理論學習觀提倡以學生為中心,強調學習者對知識意義的主動建構。本節課我設計采用支架式教學方法,以猜想→驗證→應用→評價四個活動環節為主線,引導學生通過自主探究學習實現對“三角形內角和是180°”這一知識規律的數學理解。同時,每一個活動環節都讓學生嘗試扮演一種角色,激發他們投入課堂活動的興趣。

  一.大膽設疑,提出猜想(猜想家)

  在這節課之前,有不少學生通過各種渠道了解了三角形的內角和是180°。因此,第一個環節我就讓學生根據已有的知識經驗進行大膽設疑,提出猜想,做一個猜想家。

  首先,我向學生出示一個長方形,向學生講解長方形的四個內角,從長方形的角的特征可知它的四個內角都是直角,將這四個內角的度數相加就算出長方形的內角和是360°。接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內角,設問:這個三角形的三個內角和是多少?讓學生說說各自的看法和理由,并提出“三角形的內角和是180°”的猜想。通過這一環節,學生首先獲得對“三角形內角和是什么”這一陳述性知識的數學理解。

  二、科學驗證,探索規律(科學家)

  有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索規律,這也就是本節課的第二個環節。

  第二個環節的活動步驟如下:

  (1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內角和,怎樣利用好這些工具?”

  (2)明確提出操作要求:先在自己準備的三角形上作好內角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。

  (3)學生操作后在小組內交流,出示交流提綱:

  A、通過實驗操作,你發現三角形的內角和有什么特點?你是怎樣發現的?

  B、你認為三角形的內角和與三角形的大小、形狀有關嗎?為什么?

  (4)集體交流,小結規律:

  在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調控,最后與學生一起小結歸納出:“三角形的內角和是180°,而且與它的大小、形狀無關”這一數學規律,從中感悟由特殊到一般的證明方法。

  建構主義心理學認為,學習的過程是學習者用自己的觀點去解讀教材的內容,從而在自己頭腦中建構出一個新的概念。在第二個環節,學生通過動手實驗,用自己適用的方式將“三角形內角和是180°”這一知識規律建構起來,也就是獲得了對“三角形內角和是多少、為什么”這些程序性知識的數學理解。

  三、聯系生活,實踐應用(實踐家)

  俗話說的好:“熟能生巧”。數學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。有效教學理論指出練習要考慮它的實效性。在這個環節,我設計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應用于生活問題之中。

  第一,基本運用。即書本中的“做一做”這個練習,通過這個練習讓學生形成運用三角形內角和的知識求出未知角度數的基本技能。我設計讓學生先嘗試獨立完成,在匯報交流時,鼓勵學生注意傾聽、領會同伴的解法,從而反思自己解法。

  第二,綜合運用。即書本中練習十四的第9題,這道題目的是讓學生在求特殊三角形的未知角的度數的過程中,綜合運用之前所學的各種三角形的特征與三角形內角和的知識,對知識的運用提高了一個層次。因此做這道題時,我會先引導學生說說自己的看法,找出特殊三角形中隱藏的已知條件。我估計學生可能會混淆了等腰三角形的頂角和底角,因此在匯報交流時重點放在等腰三角形這個圖形的求解,讓學生首先明確已知的是頂角的度數,因此從180°中減去頂角的度數,再平分成兩份,才能得出一個底角的度數。這時,我再提出一個反例,如果知道的是底角的度數,你能求出頂角是多少度嗎?以此引出練習十四的第10題。

  第三,拓展延伸。我設計了將一個大三角形拆分成兩個小三角形,其中一個三角形的內角和是不是用180°除以2得到?然后再出示兩個三角形拼成一個大三角形,這個大三角形的內角和是不是用180°乘2得到?以這樣的一個變式練習讓學生進一步感悟“三角形的內角和與它的形狀、大小沒有關系”的知識規律。

  通過三個層次的練習,學生應用“三角形內角和是180°”這個知識規律回到現實問題中,用自己的思維方式對各種現實問題進行解釋,這是學生不斷完善對三角形內角和知識的內涵與外延的數學理解,實現了對數學理解的提升。

  四、自我反思,評價延伸

  在這個環節,我會讓學生自己說說:“這節課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”“在今后的課堂活動中哪方面可以做得更好?”對學生的各種自我評價,同伴和老師都可以發表自己的看法,讓學生發現、總結開展本次課堂活動的經驗與不足,明確今后努力的方向。

  ★教學特色

  一、滲透數學思想

  通過探究活動,學生將三個內角和轉化為一個平角,得出三角形的內角和是180°,滲透了“轉化”的數學思想;通過實驗小結,學生發現無論三角形的形狀、大小怎樣變,三角形的內角和不變,都是180°,滲透了“變中找不變”的數學思想。

  二、利用課程資源

  1、挖掘學生資源

  有效教學有時需要教師保持“無為而教”的自我克制,不過多地干擾學生的自由學習空間。在設計這節課時,我利用學生已有的知識經驗,對三角形的內角和進行猜想,然后通過大膽的實驗激起同伴之間的互相影響,作為教師,我更多的是為學生提供大量的課程資源,喚醒和激勵學生親自去接觸、體驗知識和規律的產生過程。

  2、善用教材資源

  新課標數學實驗教材倡導人人學“有用”的數學,它把原教材繁、難、雜、偏的內容刪去。因此,我在設計練習鞏固時,不作無謂的浪費,直接使用教材中習題,作為基礎性練習和綜合性練習。考慮學生學習基礎、能力的差異,在練習的最后一層拓展性練習,我利用三角形的拆分與組合為學生提供多層次的思考,以滿足不同層次學生均發展的需要,讓人人都獲得不同程度的提高,得到成功的體驗。

《三角形內角和》說課稿6

  今天我說課的內容是人教版九年義務教育小學數學四年級下冊第五單元第67頁的《三角形的內角和》。根據xxx教授的授課七步法,即說教材,說學情,說目標,說模式,說方法,說設計,說板書,我將進行本課的說課。

  一、說教材

  “三角形的內角和”是新課標人教版四年級下冊第五單元第三節的內容。本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,“三角形的內角和”是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。

  仔細分析教材的知識結構,它是分成3個部分來呈現的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內角和的規律,第三部分是運用規律、解決問題。教材這樣編排由發現問題,到驗證問題,再到運用規律,充分體現了知識結構的有序性和強烈的數學建模思想,既符合四年級學生的認知規律,又突出了本課教學的重點。

  二、說學情

  1、通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。

  2、學生的生活經驗是可利用的教學資源。我在課前了解到,已經有不少學生知道了三角形內角和是180度,但卻不知道怎樣才能得出這個結論,因此學生在這節課上的主要目標是驗證三角形的內角和是180度。

  三、說目標

  根據小學數學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節課的目標制定為以下幾點:

  認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發現"三角形內角和等于180度"的規律。

  數學思考:在操作實驗中,讓學生感受圖形的轉化過程及數學建模思想,初步培養學生的空間思維觀念。

  解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養學生的應用意識。

  情感態度:通過各種實驗活動,激發學習興趣,體驗學習成功感,并在教學中,感受生活與數學的密切聯系。

  將運用各種實驗方法探究三角形內角和為180度的過程并掌握規律,運用規律解決實際問題確定為本節課的教學重點。而同時學生難以理解不易掌握的探究規律的全過程則是本節課的教學難點。

  四、說模式

  “三角形的內角和”一課,知識與技能目標并不難,我認為本節課更重要的是通過自主探索與合作交流使學生經歷知識的形成過程,領悟轉化思想在解決問題中的應用,以及在探索過程中,培養學生實事求是、敢于質疑的科學態度,同時合作交流中,開拓思維、提升能力。基于以上理念,本節課,我準備引導學生采用自主探究、猜想驗證、合作探究的學習模式。體現“以學生的發展為本”這一教育理念。

  五、說方法

  本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180度。

  因為《課程標準》明確指出:“要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力”。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數學思維方式。

  六、說設計

  根據我對教材的把握和對學情的了解,設計了4個環節展開教學。

  一、創設情境,發現問題

  小游戲:猜一猜藏在信封后面的是什么三角形。

  師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?

  三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

  (創設的不是生活中的情境,而是數學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現出學生在認知上的矛盾,學生用已經學的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣"。這樣引入問題恰好可以利用學生的這種認知沖突,激發學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)

  教學進入第二環節——引導探究

  二、動手操作,探究規律

  1.介紹內角、內角和,并提出猜想

  師:我們現在研究三角形的三個角,都是它的內角。

  課件演示:三角形的三個內角

  師:今天我們就來一起探究《三角形的內角和》。猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。

  2.確定研究范圍

  師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)

  請你想個辦法吧!

  (通過引導學生分析,"研究哪幾類三角形,就能代表所有的三角形"這個問題,來滲透研究問題要全面,也就是完全歸納法的數學思想)

  3.建立模型,解決問題

  (一)測量法:

  (1)學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。

  (2)教師要組織學生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內角并計算出它們的總和是多少?

  (3)記錄小組測量結果及討論結果

  實驗名稱三角形內角和

  實驗目的探究三角形內角和是多少度。

  實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片

  方法一三角形的形狀每個內角的'度數三個內角的

  方法二

  我的發現

  (4)學生匯報量的方法,師請同學評價這種方法。

  師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

  (二)剪拼法

  學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

  師:把三角形的三個內角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產生誤差,有時會差一點點,誰還有別的方法確定三角形的內角和一定是180°?

  (三)折拼法

  學生匯報后師小結:我們要研究三角形的內角和,實際上就是想辦法把三角形的三個內角湊到一起,像剪和折的方法,看三個內角拼到一起是不是180度,都是借助我們學過的平角解決的問題。

  這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內角和一定是180度?

  (四)演繹推理法

  (借助學過的長方形,把一個長方形沿對角線分成兩個三角形。)

  師:你認為這種方法好不好?我們看看是不是這么回事。

  (演示課件:兩個完全相同的三角形內角和等于360°,一個三角形內角和等于180°)

  師小結:這種方法避免了在剪拼過程中由于操作出現的誤差,非常準確的說明了三角形的內角和一定是180度。

  (學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發展而言,探究的過程比探究獲得的結論更有價值。)

  學生用的方法會非常多,但它們的思維水平是不平行的。

  直接測量法是學生利用已有的知識,測量出每個角的度數,再用加法求和;

  拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;

  而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

  前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內角和是原來長方形的四個內角之和360度,所以一個三角形的內角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內角和,它有嚴密性和精確性。

  本節課引導學生經歷從直觀到抽象、思維程度從低到高的過程,感悟數學的嚴謹性。讓學生在經歷量和拼之后,逐漸會在思維發散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發現一些新的規律。】

  4.驗證猜想"三角形的內角和是180度"

  5.進一步感受

  (1)三角形內角和與三角形大小的關系

  教師出示一個小三角形,問學生內角和是多少度?再出示一個大的等腰三角形,問學生它的內角和是多少度?把這個大三角形平均分成兩份,每份內角和是多少度?你有什么發現嗎?

  (2)三角形內角和與三角形形狀的關系

  (演示不斷變化的三角形。)仔細觀察,在這個過程中,什么變化了?什么沒變化?(三個角的度數都在變化,內角和卻總是不變的)你有什么新發現嗎?

  如果老師把一個角一直往下拽,猜一猜會怎樣?

  (通過變化的三角形和三個內角的數據顯示,進一步感受三角形的內角和與三角形的形狀、大小都沒有關系;當把三角形的一個角一直向下拽,這個角變成了一個180度的平角,另外兩個角變成了0度角,雖然已經不再是三角形,也能從一個側面證明三角形的內角和是180度,使學生感受到極限的思維方法。)

  6.解釋課前問題

  用內角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。

  三、拓展應用,深化創新

  本節課的練習由易到難,設計成三個層次。

  1、基本練習形成技能

  2、變式練習鞏固技能

  3、綜合練習發展提高技能

  介紹科學家帕斯卡(出示帕斯卡的資料)

  師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發現和驗證的,他12歲就發現三角形內角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發現。

  多邊形邊形內角和

  (設計求多邊形的內角和,旨在把新問題轉化歸結為求幾個三角形內角和的問題上,滲透化歸的數學學習方法。)

  四、總結全課,全面提升

  我們用三角形內角和的知識知道了六邊形內角和,那么五邊形、七邊形……這些多邊形的內角和是多少度?有沒有什么規律可循,你能用學到的知識和方法去探究問題,相信你還會有一些精彩的發現。

  七、說設計

  三角形的內角和是180度。

  轉化的思想:量、撕、剪、折、拼

《三角形內角和》說課稿7

尊敬的各位評委,各位老師:

  大家好!今天我說課的內容是人教版義務教育課程標準實驗教材數學四年級下冊85頁內容《三角形的內角和》。

  一、教材分析

  新課標把三角形的內角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材所呈現的內容,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發現并形成結論。

  二、學情分析

  1、通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與技能基礎。

  2、學生的生活經驗是可利用的教學資源。我在課前了解到,已經有不少學生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在這節課上的主要目標是驗證三角形的內角和是180度。

  三、教學目標

  基于以上對教材的分析以及對學生情況的思考,我從知識與技能,過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:

  1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學生推理歸納出三角形內角和是180°,并能應用這一知識解決一些簡單問題。

  2、通過把三角形的內角和轉化為平角進行探究實驗,滲透"轉化"的數學思想。

  3、通過數學活動使學生獲得成功的體驗,增強自信心,培養學生的創新意識,探索精神和實踐能力。

  教學重難點:理解并掌握三角形的內角和是180度這一結論。

  四、教學準備:

  教具:多媒體課件,

  學具:各類三角形、長方形、量角器、活動記錄表等。

  五、教法和學法

  “三角形的內角和”一課,知識與技能目標并不難,但我認為本節課更重要的是通過自主探索與合作交流使學生經歷知識的形成過程,領悟轉化思想在解決問題中的應用,以及在探索過程中,培養學生實事求是、敢于質疑的科學態度,同時,在不同方法的交流中,開拓思維、提升能力。基于以上理念,本節課,我準備引導學生采用自主探究、動手操作、猜想驗證、合作交流的學習方法,并在教學過程中談話激疑,引導探究;組織討論,適時地啟發幫助。使教法和學法和諧統一在“以學生的發展為本”這一教育目標之中。

  六、教學過程

  本節課,我遵循“學生主動和教師指導相統一,問題主線和活動主軸相統一”的原則,制定了以下教學程序:

  (一)創設情境,激發興趣

  “興趣是最好的老師”。開課伊始我利用課件動態演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學生觀察在圍的過程中,什么變了?什么沒變?讓學生在變與不變的觀察與對比中,激發學生的學習興趣,引出本節課的學習內容(板書:三角形的內角和),為后面的探索奠定基礎。

  【設計意圖:以問題情境為出發點,既豐富了學生的感官認識,又激發了學生的學習熱情。】

  (二)動手操作,探索新知

  本環節是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。

  1、揭示“內角”和“內角和”的概念

  明確“內角”和“內角和”的概念是學生進一步探究內角和度數的前提,本環節首先請學生都拿出一個三角形,指一指三個內角,然后讓學生談談自己對內角和的理解,在大家交流的基礎上得出:三角形的內角和就是三個內角的度數之和。

  2、猜測內角和

  牛頓曾說:“沒有大膽的猜想,就沒有偉大的發現!”所以我放手讓學生猜測三角形內角和的度數,由于絕大多數學生有課外知識的積累,不難說出三角形的內角和是180度,但猜想并不等于結論,三角形的內角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學生探究數學的有效途徑。

  3、動手驗證,匯報交流

  (1)介紹學具筐

  由教師介紹學具筐中都有什么學習材料。

  (2)生獨立思考、動手操作

  因為合作交流應建立在獨立思考的基礎上,所以先讓學生獨立思考:打算選用什么材料,怎樣來驗證三角形的內角和是不是180°。然后再讓學生把想法付諸實踐。此環節會留給學生充分的思考、操作、發現的時間,讓學生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學生的活動,與學生一起尋找驗證的方法,對有困難的學生提供幫助,不放棄任何一個學生。

  (3)組內交流

  經過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內交流各自的驗證方法。

  (4)全班匯報交流。

  在足夠的.交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學生可能會出現以下幾種方法:

  A、測量方法

  活動記錄表

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  這個驗證方法應是大多數學生都能想到的,在交流匯報結果時會發現答案不統一,可能會出現大于180度、等于180度或小于180度不同的結果。此時學生會在心中產生更大的疑惑,“三角形的內角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學生實事求是的態度和質疑的精神,把這一問題拋給學生,再次激起學生的探究熱情,強烈的求知欲和好勝心讓學生躍躍欲試,讓學生充分發表觀點,最終使學生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學生上臺匯報展示。

  B、撕拼法

  我認為數學課不僅是解決數學問題,更重要的是思維方式的點撥,使數學思想的種子播種在學生的頭腦中。本環節主要想實現向學生滲透“轉化”的數學思想的教學目標。四年級學生在以往的數學學習過程中都積累了不少“轉化”的體驗,但這種體驗基本上處于無意識的狀態,只有合理呈現學習素材,才能使學生對轉化策略形成清晰的認識。所以我請用撕拼法的同學上臺展示撕拼的過程,學生可能會撕拼不同類型的三角形,如:

  此時教師適時追問:你是怎么想到把三個內角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內角拼在一起正好形成了一個平角,所以三角形的內角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉化成一個平角來驗證,運用了轉化策略,真了不起。”從而使學生清晰的感受到數學學習就是把新知轉化成舊知的過程。

  C、其它方法

  除了以上兩種驗證方法外,學生可能還會出現不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內角拼成一個平角來驗證的方法,例圖:

  如果學生出現用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:

  教師可追問:“這種方法只能證明哪一類的三角形呢?”使學生明白,這種驗證方法有局限性,只能證明直角三角形的內角和是180°。然后教師引導學生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉化的策略,讓學生在不知不覺中進一步感悟轉化在數學學習中的重要作用。通過各種方法的展示交流,學生對三角形內角和是不是180度的疑問已經消除,所以可以把“?”改成“。”

  【設計意圖:《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”在教學設計中我注意體現這一理念,允許學生根據已有的知識經驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內角和是180°這個圖形性質。在探索活動中,使學生學會與他人合作,同時也使學生學到了怎樣由已知探索未知的思維方式與方法,培養他們主動探索的精神,讓學生在活動中學習,在活動中發展。】

  4、科學驗證方法

  數學是一門嚴謹的學科,數學結論的得出必須經過嚴格的證明。那如何科學地驗證三角形內角和是不是180°呢?用課件動態演示科學家的驗證方法。

  【設計意圖:一方面使學生為自己猜想的結論能被證明而產生滿足感;另一方面使學生體會到數學是嚴謹的,從小就應該讓學生養成嚴謹、認真、實事求是的學習態度。】

  (三)課外拓展,積淀文化

  為了使學生在獲得數學知識的同時積淀數學文化,用課件介紹最早發現三角形內角和秘密的法國科學家帕斯卡(課件)讓學生交流:聽了這個故事,你想說什么?在學生交流的基礎上,教師抓住契機,及時鼓勵學生:這節課才10歲的我們利用自己的智慧發現了帕斯卡12歲時數學發現,我們同樣了不起,劉老師為大家感到驕傲!(板書:!)這個感嘆號不僅表示教師對學生的贊嘆,更是學生對自我的一種肯定,獲得成功的自豪感。

  【設計意圖:適當的引入課外知識,它既可以激發學生的學習興趣,又有機的滲透了向帕斯卡學習,做一個善于思考、善于發現的孩子,對學生的情感、態度、價值觀的形成與發展能起到了潛移默化的作用。】

  (四)應用新知,解決問題

  數學規律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓練,以達到練習的有效性。對此,我設計了三個層次的練習:

  1、把兩個小三角形拼成一起,大三形的內角和是多少度?為什么?

  【設計意圖:通過兩個三角形分與合的過程,讓學生進一步理解三角形內角和等于180度這個結論,認識到三角形的內角和不因三角形的大小而改變。】

  2、想一想,做一做

  在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數。

  在一個直角三角形中,已知∠с═52,求∠A的度數。

  爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?

  【設計意圖:將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形、等腰三角形等圖形特征求三角形內角的度數。】

  3、思考:

  你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?

  【設計意圖:將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯系。】

  (五)全課小結,完善新知

  你在這堂課中有什么收獲?

  【設計意圖:這樣用談話的方式進行總結,不僅總結了所學知識技能,還體現了學法的指導,增強了情感體驗。】

  板書設計:

  三角形的內角和180°

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  總之,本節課我力圖引導學生通過自主探究、合作交流,讓學生充分經歷一個知識的學習過程,讓學生學會數學、會學數學、愛學數學。在教學中,隨時會生成一些新教學資源,課堂的生成一定大于課前預設,我將及時調整我的預案,以達到最佳的教學效果。

  教學特色:

  本節課我努力體現以下2個教學特色:

  1、引導學生自主探索,激發學生的學習興趣,體現以學生的發展為本的教學理念。

  強化學生探究學習的心理體驗,把數學學習和情感態度的發展有機的結合起來。

《三角形內角和》說課稿8

  一、說教材

  《三角形內角和》一課是人教版四年級下冊第五單元的內容,是在學生學習了三角形的特性,三角形的分類之后進行的,在此之后則是圖形的拼組,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習、掌握三角形的內角和是180°這一規律具有重要意義。本節課由淺入深,循序漸進,引導學生觀察—猜測—實驗—驗證,逐步培養學生的邏輯推理能力。

  二、教學目標

  基于以上對教材的分析,我設計了本節課的教學目標:

  1、過實驗、操作、推理、歸納三角形的內角和是180°

  2、運用三角形的內角和知識解決實際問題

  3、過拼、擺感受數學的轉化思想

  4、研究性學習使學生獲得實實在在地經歷和感受,從情感上喚醒學生的學習需要,激發學生的主動性。數學活動使學生獲得成功的體驗,增強自信心。

  三、教學重、難點

  重點:掌握三角形的內角和是180°。難點:運用三角形內角和解決實際問題。

  四、說學情

  四年級學生經過以往知識的學習具備了初步的動手操作、主動探究的'能力,他們正處于由形象思維向抽象思維過渡的階段。上學期已經認識了角的度量,本學期學習了三角形有關知識,因此可通過他們的實際動手操作,得出結論。

  五、教學準備

  準備各種形狀的三角形,量角器

  六、說教法、學法

  學法:因為《課程標準》明確指出:“要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養學生初步的思維能力”。針對學生的學習情況,本節課,我將積極倡導自主、合作、交流的學習方法展開學習活動。教法:根據以上設計的學法我確定了本節課的教法,在本節研究性學習的課堂中,我的作用不是“教”而是“導”,通過教師的精心引導和點撥,啟發學生主動思考,嘗試用多種方法來證明這個結論,學生在小組中合作探索,驗證三角形的內角和是180度。

  七、說教學過程

  (在教學前我為學生準備了多種形狀的三角形,結合學生的認知水平和年齡特點我將教學過程設計為四個環節)

  (一)、誘導——營建雙效氛圍

  有一天,兩個三角形吵了起來,大三角形說自己的個頭大,所以內角比小三角形大。可小三角形說別看自己個頭小,但角卻不小。他們爭得不可開交,始終爭論不出結果。到底誰的內角大,誰的內角小,請大家幫忙想個辦法,好嗎?

  【設計意圖】

  (一)通過一個情景小對話為學生創建了一個平等,寬松的學習氛圍,學生可以自由地發表意見,自主的按自己的學習、思維方式參與教學活動。也為學生建造了一個積極探究的氛圍。蘇霍姆林斯基說過:兒童的精神中有一種特別強烈的需要,這就是希望自己是一個發現者、研究者和探索者。在這個過程中,學生的思維被這個極具吸引力的情境驅動著,激發了學生強烈的探索欲望。

  (二)、研究——展露探索時空這一環節利用學生準備好的卡片進行量一量,拼―拼,折-折,畫一畫等動手操作,并向同學提出質疑大小不同及形狀不同的三角形,它們的內角和會是一樣嗎通過小組討論,全班交流,教師點撥等方式探究得出三角形內角和等于180度,并充分感受三角形三個角之間的聯系和變化。

《三角形內角和》說課稿9

  《三角形內角和》說課稿

  一、說課內容:北師大版義務教育課程標準實驗教材小學數學四年級下冊第二單元第三節----《三角形的內角和》一課。

  二、教材分析:

  在這一環節我要闡述四方面的內容:

  1、三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,教材呈現教學內容時,安排了一系列的實驗操作活動。讓學生通過探索,發現三角形的內角和是180度。

  2、學情分析:

  學生已經知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內角和是180°的結論。

  3、教學目標:

  A、讓學生親自動手,發現,證實三角形的內角和等于180度。并能初步運用這一性質解決有一些實際問題。

  B、在經歷“觀察、測量、撕拼、折疊”的驗證的過程中培養學生觀察能力,歸納能力、合作能力和創造能力。

  4、教學重難點:

  經歷三角形的內角和是180度這一知識的形成,發展和應用的全過程。

  5、教學難點:

  讓學生用不同方法驗證三角形的內角和是180度。

  三、教學準備:

  在備課過程中,我閱讀了農遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農遠光盤中的多媒體課件,用課件適時播放。

  四、教法分析

  為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。要激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發現法、合作探究法和直觀演示法。

  五、學法分析

  在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現了學生動手實踐、合作交流,自主探索的學習方式。

  六:教學流程:

  (一)猜迷激趣,復習舊知。,

  興趣是最好的老師,開課我出示了一則謎語。調動學生學習的積極性。

  形狀是似座山,穩定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)

  由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內角和”一詞的講解,為后面的探索奠定基礎。

  (二)創設情境,巧引新知(課件出示)

  (三)驗證猜想,主動探究。

  本環節是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。

  “你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:

  A、先獨立思考,你想怎樣驗證?

  B、再小組合作探究,運用多種方法驗證。

  C、最后匯報,展示你的驗證方法。

  課程標準指出:數學教學應該由簡單的問答式教學向獨立思考基礎上的合作學習轉變。所以,先讓他們獨立思考,形成獨特的個人見解。等有了合作的需要時,再合作探究。此時的合作,學生才會有展示自己的方法的強烈欲望,才會在不同意見的相互碰撞中產生富有創意的思維火花。在足夠的討論之后,進入了匯報展示過程。學生可能出現以下幾種方法

  1.量角求和

  這個驗證方法應是全班同學都能想到的,因此,在這一環節我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發現三角形的三個內角和都是180度。

  2.拼角求和

  通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發現這三個三角形的內角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。

  3.折角求和

  有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內角剛好組成平角呢?這一驗證方法是本課教學的一個難點。

  在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發現。最后歸納出結論:所有三角形的內角和都是180度。

  (四)應用新知,解決問題。

  數學離不開練習。本節課我把圖像、動畫等引入課件,使練習的內容具有簡單的背景與情節,使學生對解題產生了濃厚的興趣。

  我設計了四個層次的練習:有序而多樣。

  1)基本練習:讓學生通過這一習題,掌握求未知角的.一般方法。

  2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數學,數學能解決生活實際問題,真切體驗到學的是有價值的數學。

  3)鞏固提高:使學生了解在間接條件下求未知角的方法。

  4)拓展延伸。讓學生體會到數學中輔助線的橋梁作用,在潛移默化中滲透一個重要數學思想―――轉化,為以后學習數學打下堅實的基礎。

  (五)全課小結完善新知

  1、這節課我們學到了什么知識?2、你有什么收獲?

  通過學生談這節課的收獲,對所學知識和學習方法進行系統的整理歸納。

  (六)板書設計

  三角形的內角和

  量角撕拼折角拼圖

  三角形的內角和是180度。

  六、說效果預測:

  本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養了他們主動探索的精神。促進學生良好思維品質的形成,達到預想的教學目的。使學生在探索中學習,在探索中發現,在探索中成長!

《三角形內角和》說課稿10

  一、說教材

  “三角形的內角和”是人教版小學數學四年級下冊第五單元第3節的內容。本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的規律,打下了堅實的基礎。

  二、說學情

  一堂成功的課不僅要熟悉教材,還需要我們充分的了解學生的特點。

  本節課的授課對象是四年級的學生,從心理特征來說,他們對于新鮮的知識充滿著好奇心和強烈的求知欲望,無意注意仍起著主要作用,有意注意正在發展。

  從認知狀況來說,學生在此之前已經學習了三角形有關的知識,對三角形的內角已經有了初步的認識,這為順利完成本節課的教學任務打下了基礎,但對于三角形內角和都是180度的理解,學生可能會產生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。

  三、說教學目標

  根據新課程標準,教材特點、學生實際,我確定了如下三維教學目標。

  【知識與技能】通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  【過程與方法】經歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結的`能力。

  【情感態度與價值觀】在參與學習的過程中,感受數學的魅力,體驗成功的喜悅,激發學習數學的興趣。

  四、說教學重難點

  根據學生現有的知識儲備和知識點本身的難易程度,學生很難建構知識點之間的聯系,這也確定了本節課的重點為三角形內角和定理,而三角形內角和定理推理的過程為本節課的難點。

  五、說教法學法

  新課程明確倡導動手實踐,自主探索、合作交流的學習方式,教師不僅是知識的傳授者,更是學生探究性、合作性學習活動的設計者,組織者和學生學習的伙伴。在教學過程中,我將采用創設情境,直觀演示,觀察,猜測,操作,思考,總結等方法,把學生帶進開放的,富有挑戰性的問題情景,讓學生通過自己學習,合作學習,和交流等活動,獲得知識與能力,掌握解決問題的方法,獲得積極的情感體驗。整個學習和探索活動,體現出開放性思維和多元思維并存的思維方式,教學生初步學會自主梳理知識,探索知識的方法,使他們親歷自主探究的過程。

  六、教學過程

  (一)導入新課

  首先是導入環節,我會多媒體課件播放有關三角形內角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內角和的大小”爆發了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內角和一定比你們的內角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內角和比你大”。直角三角形說“別爭了,我們的內角和是一樣大的,因為三角形的內角和是180°”。

  根據視頻中三角形的對話,順勢引出題目——三角形的內角和。

  設計意圖:在這個環節中,多媒體課件展示有關三角形內角和的內容,激發學生深厚的學習興趣和求知欲望,快速的進入學習高潮。

  (二)新課探究

  接下里是新課探究環節,在這一教學環節中,我首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內角的和各是多少度?通過測量,學生可以發現三角形的內角和是180°。

  接著我會提出一個問題是不是所有的三角形的內角和都是180°,如何進行驗證你的結論呢?接下來我會讓學生分小組討論,針對學生出現的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。

  通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。最后引導學生總結出三角形的內角和是180°。

  此環節通過小組合作,體現以生為本的教學理念。既培養學生的推理能力,又鍛煉學生的語言表達能力和溝通能力。

  (三)鞏固提高

  接下來進入鞏固提高環節。本環節我依據教學目標和學生在學習中存在的問題,設計有針對性、層次分明的練習題組。讓學生在解決這些問題的過程中,進一步理解、鞏固新知,訓練思維的靈活性、敏捷性、創造性,使學生的創新精神和實踐能力得到進一步提高。

  練習題組設計如下:

  第二題把這兩個完全一樣的直角三角形拼組在一起,得到的新三角形的內角和是多少度?

  設計意圖:通過各種形式的練習,進一步提高學生學習興趣,使學生的認知結構更加完善。同時強化本課的教學重點,突破教學難點。

  (四)小結作業

  在小結環節,我會引導學生同桌之間以“你問我答”的形式回顧本節課所學的主要內容,這節課你都學習了哪些內容?三角形內角和定理的推導過程體現了哪種數學思想方法?

  這樣設計的目的是讓學生在回顧課堂經歷的基礎上,以相互交流、相互啟發的方式總結自己的收獲,教師通過概括性引導提升學生對三角形的內角和定理的認識

  在作業環節,我會讓學生利用本節課所學的知識,思考一下四邊形的內角和是多少度?

  這樣設計的意圖是學生在學習本節課內容的基礎上,進一步對本節課的一個延伸,拓展學生的思維。

  七、板書設計

  為了讓學生對本節課的學習形成清晰的思路,同時還有利于學生系統性地記憶新知。我的板書設計如下。

《三角形內角和》說課稿11

  一、說教材

  “三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。經過第一學段以及本單元的學習,學生已經具備一定的關于三角形的認識的直接經驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的概念,打下了堅實的基礎。

  為方便教師領會教材編寫的意圖與理念,開展有效的教學,更好的發展學生的空間觀念,培養學生的各種能力,教材在呈現教學內容時,不但重視體現知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現在:概念的形成不直接給出結論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發現、討論、交流等獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數學活動經驗,發展空間觀念和推理能力,不斷提高自己的思維水平。基于對教材以上的認識及課程標準的要求,我擬定本節課的教學目標為:

  1、知識目標:知道三角形內角和是180°。

  2、能力目標:①通過學生猜、測、拼、折、觀察等活動,培養學生探索、發現能力、觀察能力和動手操作能力。②能運用三角形內角和是180°這一規律解決實際問題。

  3、情感目標:①讓學生在探索活動中產生對數學的好奇心,發展學生的空間觀念;②體驗探索的樂趣和成功的快樂,增強學好數學的信心。

  教學重點:三角形內角和是180°的實際應用。

  教學難點:探索三角形的內角和是180°

  {二、教學用具}

  本節課采用課件、不同形狀的三角形、量件器等。

  三、說教法

  新課程標準的基本理念就是要讓學生“人人學有價值的數學”。強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。要激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態度,促使學生向著預定的目標發展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養學生的發散思維,進一步激發學生學習數學的熱情。

  四、說學法

  學法是學生再生知識的法寶。為了使學生能在整節課的探索活動中積極主動參與動手實踐、自主探究、合作交流的學習活動,我設計了獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數是18度。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式,同時也培養了學生探索能力和創新精神。

  五、說教學流程

  “將課堂還給學生,讓課堂煥發生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創造者。在整個教學設計上力求充分體現“以學生發展為本”教育理念,我將教學流程擬定為“設疑導入——大膽猜想——動手驗證——鞏固內化&mdash

  ;—拓展延伸”,努力構建探索型的課堂教學模式。

  1、設疑導入

  教學的藝術不在于傳授知識,而在于喚醒、激發和鼓勵。伊始上課,我想以前面學過的知識“三角形的分類”為切入點,給出不同形狀的三角形,讓學生說出它們的名稱,有銳角三角形、直角三角形、鈍角三角形,隨后我提出挑戰,讓學生畫一個很特殊的.三角形:即含有兩個直角的三角形,結果是可想而知的,學生是不可能畫出來的,想知道為什么呢?學了“三角形內角和”我們就知道了。板書課題:三角形內角和。這樣,我在很短的時間內最大限度的激發學生探究數學的愿望和興趣,為學生進一步學習打好基礎。

  2、大膽猜想

  學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時我讓學生大膽猜想:為什么不能畫出有兩個直角的三角形呢?猜一猜三角形的內角和”大約是多少度?學生猜想時我在黑板上書寫幾個比較接近的度數。這樣形成統一的認識,使后邊的探索和驗證活動有了明確的目標。

  3、動手驗證

  學生形成統一的猜想后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數學探究活動{既驗證三角形的內角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,也不是隨意放開讓學生盲目的操作,我想把放和引有機的結合起來,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發展空間觀念和論證推理能力。具體過程為:量一量量不同形狀的三角形的三個內角拼一拼將三角形的三個內角可以拼成一個什么角,折一折將三角形的三個內角可以折成一個什么角,看一看無論是量、還是拼、或者是折我們得到的三角形內角和都是多少度?。

  4、鞏固內化:

  俗話說的好:“熟能生巧”。數學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我力爭注意將數學的思考融入不同層次的練習之中,很好的發揮練習的作用。

  1、釋疑練習:讓學生用所學的知識說一說為什么畫不出含有兩個直角的三角形?目的是解釋課前的設疑,從中培養學生應用意識和解決問題的能力;

  2、基本練習:鞏固本節課所學的知識。

  3、變式練習:目的是是學生將知識轉化成能力。

  4、綜合練習:目的是讓學生感受數學與生活的聯系,培養運用所學知識解決實際問題的能力。

  5、拓展創新:力求體現“不同的人在數學上得到不同的發展”這一新課程理念。

  數學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我給學生出了一道通過對本節課所學知識的遷移就可以完成的問題,對學生進行思維訓練,既培養了學生應用知識的能力,又培養了學生的創新意識和創新精神。

  總之,在本節課教學活動中我力求充分體現一下特點:以學生發展為本,以學生為主體,以思維訓練為主線的教學思想;充分關注學生的自主探究與合作交流,注重培養學生的創新意識和實踐能力。

《三角形內角和》說課稿12

  一、說教材

  1、說課內容

  今天我說課的內容是人教版九年義務教育小學數學四年級下冊第五單元第67頁的《三角形的內角和》。

  2、教材分析

  《三角形的內角和》是探索型的教材。是在學生學習了三角形、長方形等基本圖形,以及角的度量、三角形的特征、分類的基礎上進行教學的,學生對這一知識的理解和掌握又將為進一步學習幾何知識打下堅實的基礎。

  教材的知識它是分成3個部分來呈現的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內角和的規律,第三部分是運用規律、解決問題。教材這樣編排由發現問題,到驗證問題,再到運用規律,充分體現了知識結構的有序性和強烈的數學建模思想,既符合四年級學生的認知規律,又突出了本課教學的重點。

  3、教學目標

  根據小學數學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節課的目標制定為以下幾點:

  知識與技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發現"三角形內角和等于180度"的規律。

  過程與方法:在操作實驗中,讓學生感受圖形的轉化過程及數學建模思想,初步培養學生的空間思維觀念。解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養學生的應用意識。

  情感態度:通過各種實驗活動,激發學習興趣,體驗學習成功感,并在教學中,感受生活與數學的密切聯系。

  4、教學重點難點

  根據本節課的教學目標及對編者意圖的理解。將運用各種實驗方法探究三角形內角和為180度的過程并掌握規律,運用規律解決實際問題確定為本節課的教學重點。而同時學生難以理解不易掌握的探究規律的全過程則是本節課的教學難點。

  5、教學具準備

  每個4人小組準備三個不同的三角形(銳角三角形、鈍角三角形、直角三角形的紙片一個,且要求大小不一)、實驗報告單一份;量角器、白板。

  二、說教法學法我要說的第二塊是教法學法。

  新課程標準的基本理念就是要讓學生"人人學有價值的數學"。強調"教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程"。

  因此,我運用猜想驗證,自主探究,動手操作,直觀演示的教學法,讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式。

  在整個教學設計上力求充分體現"以學生發展為本"教育理念,將教學思路擬定為"故事設疑導入--猜想驗證{自主探究}--鞏固新知—數學文化—課堂總結",努力構建探索型的課堂教學模式。當然,一堂課的效果如何,還要看課堂結構是否合理。接下來,我就來說說我的教學程序設計。

  三、說教學流程

  根據我對教材的把握和對學情的了解,設計了5個環節展開教學。

  四、創設情境,發現問題

  一天,圖形王國舉行了一場盛大的宴會,正在大家聊得熱火朝天的時候,突然下面傳來了一陣吵鬧聲,圖形王國的國王“點”來到爭吵的地方一看,原來是三角形家族在爭吵,只聽一個鈍角三角形說:“我有一個內角是最大的,所以我的三角和也是最大的。”,這時候一個銳角三角形說“我長得比你大,所以說我的內角和才是最大的!”,這時,一個直角三角形弱弱的說了一句:“誰長的大,誰的內角和就最大,這不公平!!!”,于是他們就讓國王來評理,聽到這里國王的也糊涂了:“你們說的都是什么呀?什么是三角形的內角,什么是三角形的內角和呀?”

  五、合作交流,引導探究

  (1)學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。

  (2)教師要組織學生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內角并計算出它們的總和是多少?

  (3)記錄小組測量結果及討論結果

  實驗名稱:三角形內角和

  實驗目的:探究三角形內角和是多少度。

  實驗材料:量角器,銳角三角形紙片,直角三角形紙片,鈍角三角形紙片。

  (4)學生匯報量的方法,師請同學評價這種方法。

  師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的.內角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

  (一)剪拼法

  學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

  師:把三角形的三個內角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產生誤差,有時會差一點點,誰還有別的方法確定三角形的內角和一定是180°?

  (二)折拼法

  學生匯報后師小結:我們要研究三角形的內角和,實際上就是想辦法把三角形的三個內角湊到一起,像剪和折的方法,看三個內角拼到一起是不是180度,都是借助我們學過的平角解決的問題。

  這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內角和一定是180度?

  (三)演繹推理法

  (借助學過的長方形,把一個長方形沿對角線分成兩個三角形。)

  師:你認為這種方法好不好?我們看看是不是這么回事。

  (演示課件:兩個完全相同的三角形內角和等于360°,一個三角形內角和等于180°)

  師小結:這種方法避免了在剪拼過程中由于操作出現的誤差,非常準確的說明了三角形的內角和一定是180度。

  (學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發展而言,探究的過程比探究獲得的結論更有價值。)

  學生用的方法會非常多,但它們的思維水平是不平行的。

  直接測量法是學生利用已有的知識,測量出每個角的度數,再用加法求和;

  拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

  前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內角和是原來長方形的四個內角之和360度,所以一個三角形的內角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內角和,它有嚴密性和精確性。

  六、訓練提高

  使用課本兩道題,以及以下習題

  (1)∠1=35°∠2=47°∠3=()

  (2)∠1=50°∠2=40°∠3=()

  (3)∠1=20°∠2=45°∠3=()

  按著難易程度逐漸提高,鞏固新知。

  七、數學文化

  帕斯卡(BlaisePascal,1623~1662),法國數學家、物理學家、近代概率論的奠基者。早在300多年前這位法國著名的科學家就已經發現了任何三角形的內角和是180度,而他當時才12歲。

  八、課堂總結

  我們用三角形內角和的知識知道了六邊形內角和,那么五邊形、七邊形……這些多邊形的內角和是多少度?有沒有什么規律可循,你能用學到的知識和方法去探究問題,相信你還會有一些精彩的發現。

  九、反思

  整節課都在比較愉快的氛圍中展開的,但在小組合作中因為要求不夠明確,導致在合作中出現了問題,不過好在由于我給孩子們足夠的時間,他們能說出:所有三角形都是180度,證明孩子們是學會了的。所以,如果你給孩子足夠的時間,他們會給你意想不到的驚喜。

《三角形內角和》說課稿13

  一、教學目標

  課程標準這樣描述:通過觀察、操作了解三角形內角和是180。

  分析教材內容,在上學期的學習中學生已經掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。

  課前我對學情進行了分析:

  1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數,認識了三角形的基本特征及其分類,由于學生的數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題策略的多樣化。

  2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。

  通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:

  1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°并會應用這一規律解決實際的問題。

  2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。

  二、評價設計

  針對這一目標的完成,我設計了一下評價方式:

  1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。

  2、表現性評價:通過小組討論表現、學生回答問題情況,適當對學生進行點撥。

  3、操作反應評價:通過學生在研究三角形內角和過程中的測量、簡拼、折等活動對學生進行評價

  評價題目

  1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)

  檢測學習目標1的掌握情況。

  2、通過小組、同桌合作、匯報,教師引導學生理解本節課所蘊含的學習方法,檢測學習目標2的掌握情況

  三、教具學具準備

  教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格

  學具準備:三角板、量角器.

  四、教學過程

  這節課的教學我通過一下四個環節完成。

  1、觀察猜測,引入新知;

  2、動手操作,探索新知;

  3、鞏固新知,拓展應用;

  4、總結評價、延伸知識。

  第一環節,觀察猜測,引入新知。

  由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發現在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:

  (1)鈍角變小,另外兩個角怎樣變?

  (2)鈍角變大,另外兩個角怎樣變?

  (3)鈍角變大、變大、變大再變大,還能再大嗎?發現再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。

  這只是我們的猜測,(板書:猜測)數學是要用事實說話的,這節課我們就來學習三角形的內角和。(板書課題)這樣由三種變化的三角形引入新課,激發學生興趣的同時為后面的學習做準備

  第二環節,動手操作,探索新知。

  1、直角三角形的內角和。

  (一)直角三角形內角和

  先讓學生觀察一副三角板的內角和,發現都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。

  四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的`方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。

  這個環節引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。

  (二)、銳角三角形、鈍角三角形的內角和

  課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。

  這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。

  第三環節、鞏固新知,拓展應用

  用三角形的這一特性來解決一些問題

  1、基本練習

  通過做一做和說一說這兩個練習來強化學生認知。

  2、拓展練習

  拼一拼、想一想

  (1)兩個三角形拼成大三角形,說出大三角形的內角和

  (2)一個三角形去掉一部分

  引導學生發現,無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數和他的大小形狀都無關。

  (3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?

  (4)如果變成五邊形,你還能求出他的度數嗎?

  充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。

  第四環節、總結評價、延伸知識

  通過這個環節讓學生談一談自己的收獲或感受,對本節課的知識進行拓展升華。

  五、板書設計:

  三角形的內角和

  猜測(180度)

  驗證:測量、撕拼、折疊結論

  三角形的內角和是180度

  我的板書簡明扼要,體現了本節課的重點,而且是對本節課學習方法的一個回顧。

《三角形內角和》說課稿14

各位老師:

  你們好,我是來應聘XX數學老師的X號考生,我今天抽到的試講題目是《三角形的內角和》,下面開始我的試講。

  同學們,上節課我們已經學習了三角形的基本形狀,那么同學們一起告訴老師我們都學了什么形狀的三角形啊?對,非常好,有鈍角三角形、直角三角形和銳角三角形。大家回答的很好,說明上節課掌握的很好,那今天老師想讓大家畫個特殊點的三角形,好不好?今天我請同學們在紙上畫一個有兩個直角的三角形,畫好了請舉手哦。有沒有畫好呀?沒有,大家看黑板上老師畫的,是不是和你們畫出來的一樣?為什么我們沒辦法畫出有兩個直角的三角形呢?肯定里面有秘密,大家跟著老師一起來研究一下好不好?

  大家拿出事先準備好的三角板和量角器吧,同學們,你們現在用量角器來測量一下每一個三角形的角的度數,待會老師會進行統計。(轉身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數據有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發現了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內角和是180度。

  可是是不是所有內角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內角度數,并報給老師內角和。好,請第一排的.女生起來回答,你的三個內角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。

  下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結論呢?給大家十分鐘時間來討論。

  好,討論結束,來,哪個組派個代表來回答一下?請,哦,你說用量角器測量,恩不錯,可是用量角器的話,有可能存在誤差對不對?那還有沒有更好的方法呢?

  老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內角和是180度。

  那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。

  大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數,有沒有同學告訴我剩下的度數啊?趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。

  這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!

《三角形內角和》說課稿15

  尊敬的各位評委老師好!(鞠躬)

  我是小學數學組幾號考生,今天我說課的題目是《三角形的內角和》,下面開始我的說課。

  依據數學課程標準,在新課程理念的指導下,我將以教什么,怎樣教以及為什么這樣教的思路,從教材分析,教學目標,教學方法教學內容等方面展開我的說課。

  說教材

  《三角形的內角和》是人教版小學數學四年級下冊第五單元的內容。“三角形的內角和”是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的.規律,打下了堅實的基礎。

  說學情

  一節成功的課,不僅在于對教材的把握,還有對學生的研究。四年級的學生正處于具體形象思維為主導的階段,他們解決問題的能力很強,但自控力稍差。因此本節課將注重引導學生動腦思考,動手實踐,打破以知識傳授為主的傳統數學課堂模式,采用靈活多樣的教學方法,牢牢將學生的注意力集中在課堂中。

  說教學目標

  根據新課程的要求及教材的編寫特點,充分考慮到四年級學生的思維水平,我確立如下三維教學目標:

  知識與技能目標:通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  過程與方法目標:經歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結的能力。

  情感態度價值觀目標:在參與學習的過程中,感受數學的魅力,體驗成功的喜悅,激發學習數學的興趣。

  說教學重難點

  根據教學目標,我確定了本節課的重點和難點。重點為三角形內角和定理,而三角形內角和定理推理的過程為本節課的難點。

  說教法

  為了更好地突出重點,突破難點,堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,我將采用啟發式教學法,引導學生利用已有的知識經驗去探索新知,并在探索過程中掌握本節重難點,同時輔之以多媒體教學設備,直觀地呈現教學內容。

  我將引導學生采用自主探究,合作交流的方式進行學習,通過動手動腦動口來掌握本節課的教學重難點。

  說教學內容

  為了更好地完成本節課的教學內容,突出重點突破難點,我設計了以下幾個教學環節:

  (一)創設情境,導入新課

  為了引入新課,調動學生的學習興趣,一開始上課我便用多媒體播放有關三角形內角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內角和的大小”爆發了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內角和一定比你們的內角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內角和比你大”。直角三角形說“別爭了,我們的內角和是一樣大的,因為三角形的內角和是180°”。根據視頻中三角形的對話,順勢引出題目——三角形的內角和。

  多媒體課件展示有關三角形內角和的內容,激發學生深厚的學習興趣和求知欲望,快速的進入學習高潮。

  (二)自主探究,感受新知

  首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內角的和各是多少度?通過測量,學生可以發現三角形的內角和是180°。

  接著我會提出一個問題是不是所有的三角形的內角和都是180°,如何進行驗證你的結論呢?接下來我會讓學生分小組討論,針對學生出現的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。

  通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。

  最后引導學生總結出三角形的內角和是180°。

  以上教學活動采用讓學生主動探索、小組合作交流的學習方式,使學生充分經歷數學學習的全過程,體現以生為本的教學理念。學生在全程參與中不僅掌握新知發展能力培養的推理能力,又鍛煉學生的語言表達能力和溝通能力,同時讓學生體驗數學與生活的緊密聯系。

  (三)鞏固練習,強化知識

  我利用小學生好勝心強的特點,以闖關的形式將課本的習題展現在多媒體上來鞏固本節課所學的知識,這樣設計能增加數學的趣味性,激發學生的學習興趣,并查看他們知識的掌握情況。

  (四)課堂小結

  我將此環節分為兩部分。第一部分是以學生為主體的知識性總結,讓學生暢談本節課的感受和收獲,及時了解學生的學習情況和情感體驗。第二部分是以教師為主體的情感性總結,我會對學生的表現予以表揚和激勵,激發學生的學習興趣,增強學習自信心。

  (五)布置作業

  針對學生的年齡特點,我會讓學生在課下和家長交流今天的收獲和感受,從而讓家長了解學生在校的學習情況,并促進學生與家長的溝通。

  說板書設計

  一個好的板書應該是簡潔明了整潔美觀,重難點突出,能夠對學生理解本節知識有一定的強化作用,因此我的板書是這樣設計的。

  以上就是我的全部說課,感謝各位老師的聆聽!(鞠躬)

【《三角形內角和》說課稿】相關文章:

《三角形內角和》說課稿01-11

《三角形內角和》說課稿06-10

三角形內角和說課稿01-30

三角形內角和說課稿01-05

三角形內角和說課稿通用[15篇]05-27

《多邊形的內角和》說課稿03-15

《多邊形內角和》說課稿02-19

《三角形內角和》教學反思02-18

《三角形的內角和》的教學反思05-20

《三角形的內角和》教學反思03-11

久久一级2021视频,久久人成免费视频,欧美国产亚洲卡通综合,久久综合亚洲一区二区三区色
色综合天天综合网中文 | 日韩v国产v亚洲v精品v | 亚洲一区二区三区四区久久 | 亚洲国产国语高清在线网址 | 亚洲熟女综合色一区二区三区 | 亚洲中文字幕午夜福利电影 |