您的位置:群走網>教學資源>教學反思>3的倍數特征教學反思
3的倍數特征教學反思
更新時間:2024-08-03 05:13:35
  • 相關推薦
3的倍數特征教學反思15篇

  作為一位到崗不久的教師,我們都希望有一流的課堂教學能力,通過教學反思能很快的發現自己的講課缺點,快來參考教學反思是怎么寫的吧!以下是小編為大家整理的3的倍數特征教學反思,歡迎閱讀與收藏。

3的倍數特征教學反思1

  3的倍數是在學習了2、5的倍數特征的基礎上進行學習的,我讓孩子們提前進行了預習,通過授課發現孩子們的預習沒有達到預想的效果。學生在匯報時能夠圈出3的倍數,而且非常準確,在匯報3的倍數的方法時,他們大多數是借助結論得出來的,沒有體現出他們研究的過程。因此,我在課上進行了及時的指導,把孩子們需要匯報的過程進行了詳細的說明。孩子們很快理解了我的意思,立刻進行了新的分工。第一位同學匯報了他們找到的3的倍數,并介紹的找3的倍數的方法即,用這個數除以3,看商是不是整數而且沒有余數。接下來匯報百數表中前十個3的倍數,讓大家觀察個位上的數字,通過觀察發現3的倍數個位上是0-9的任意一個數,不能像2、5的倍數特征只看個位的特殊數就行了。因此只看個位不能確定是不是3的倍數。

  由于孩子們有了提前的`預習,孩子們心目中已經有了結論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進行了滲透,讓學生駐足片刻,把握課堂的結構。

  第三個環節,孩子們發現斜著看每個數的各位逐漸加一,十位逐漸減一,因此個位上的數字和十位上的數字之和不變,而且都是3的倍數。讓孩子試著總結結論:兩位數個位上和十位上的數字之和是3的倍數,那么這個數也是3的倍數。

  第四個環節,其實并不是把3的倍數特征總結出來了就完成任務了。這個結論只是通過觀察百數表得出的關于兩位數的結論,兩位數滿足這個特征,是不是所有的數都適用呢?于是讓孩子試著寫一個三位數、四位數而且是3的倍數,然后用這個結論進行驗證,看是否符合。孩子們先試著寫幾個3的倍數,老師羅列到黑板上,然后分別用用各個數位之和相加的方法和除以3是否有余數的方法進行驗證。驗證的結果是肯定的,因此得出的結論適合所有的數。

  到這里孩子們對于3的倍數特征已經理解的很透徹了,做起練習來也顯得得心應手。孩子體驗了結論得出的過程,每一個環節的設計都有他的意圖,在每個環節孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數學課。

3的倍數特征教學反思2

  3的倍數的特征的教學與2、5倍數的特征難度上有不同,因為2、5的倍數的特征從數的表面的特點就可以很容易看出(根據個位數的特點就可以判斷出來),但是3的倍數的特征卻不能從表面去判斷,因而我特設以下環節突破重難點預習題。

  1、給出一些數讓學生先判斷哪些數是3的倍數。并讓學生說一說你是怎么判斷的?

  2、從以上的3的倍數進行思考:

  (1)、3的倍數與它個位上的數有關系嗎?

  (2)、 3的倍數的各位上的數的`和都是3的倍數嗎?

  新課時讓學生從上面的練習中去發現了什么,從而歸納3的倍數的特征:一個數的各個數位上的數字和是3的倍數,這個數就是3的倍數

  然后再讓每個同學任意寫一個3的倍數,再看看這個數的各個數位上的數的和是不是3的倍數。要求學生說出方法和思路。

  經過以上這些活動后學生都能對一個數是不是3的倍數進行簡單的判斷。特別是學生對3的倍數特征的判斷大多數的學生能先求出各個數位的數字之和是不是3的倍數,然后再進行判斷,效果很好。

3的倍數特征教學反思3

  《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。

  1、找準知識沖突激發探索愿望。

  找準備知識中沖紛激發探索,在第一環節中我先讓學生復習2.5的倍數特征并對一些數據做出了判斷而后我們“誰來猜測一下3的倍數特征”激發學生探究的愿望。由于學生剛剛復習了2.5倍數的特征,知道只要看一個數的個位,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的`愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2、激發學習中的困惑,讓探究走向深入。

  找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,剛開始我們先采用課本上百數表來研究,結果在一個班實踐后認為效果并不是很理想,由于數太多,讓學生觀察3的倍數的這些數時,并從中找出相同的地方,結果,很多同學找了與本節課毫無關系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數代表百數表,于是我設計了一個表格,讓學生用除法計算的方法找到3的倍數的特征,并觀察這些數,這些數的個位分別從0到9都有,讓學生知道3的倍數的特征跟數的個位沒有關系,然后從中又把像45和54,75和57,123和321等特殊的數單獨展示出來,讓學生觀察從中找出規律。結果我又重新上了這節課,效果比上節課要好。

  這節課結束后,我感覺最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果

  《3的倍數的特征》教學反思

  《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。

  找準知識沖突激發探索愿望。

  找準備知識中沖紛激發探索,在第一環節中我先讓學生復習2.5的倍數特征并對一些數據做出了判斷而后我們“誰來猜測一下3的倍數特征”激發學生探究的愿望。由于學生剛剛復習了2.5倍數的特征,知道只要看一個數的個位,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

3的倍數特征教學反思4

  《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展。

  新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養學生在實際的學習活動中,善于發現問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數的特征,有規律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規律判斷,但學生的能力沒能培養,智力得不到開發。本課的'設計采用了啟發與發現相結合的教學方法,激勵學生大膽猜想,動手實踐,去發現規律,形成技能,升華至應用于生活。

  本課主要使學生在原有認知的基礎上產生認知沖突,進而產生新的探索欲望,突出了對學生“提出問題—探索問題—解決問題”的能力培養,學生能在猜想、操作、驗證、交流、反思、歸納的數學活動中,獲得較為豐富的數學經驗,也有助于創造性的培養。當然,培養學生的創造個性,僅僅停留在教學活動的情境上是不夠的,教師首先要具有創造精神,注重設計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發學生的創新欲望,學生的創造意識才能得以培養,個性才能充分發展。本課重點是要理解3的倍數特征,能夠準確判斷一個數是不是3的倍數。我采用的是復習導入,先和學生們一起回憶了一下

  2、5的倍數特征,然后出示本課的教學目標。新授環節先讓學生猜測一下3的倍數會有哪些特征呢?接著采用數形結合的方法,學生動手操作,在1~100的數字卡里找一找3的倍數,然后用自己喜歡的符號圈起來,然后觀察小組討論匯報。發現3的倍數特征不像

  2、5的倍數特征一樣,看一個數的末尾了,引導學生是不是要看這個數其它的數位上的數呢?學生發現也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數特征是一個數各個數位上數字相加的和。找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,剛開始我們先采用課本上百數表來研究,結果在一個班實踐后認為效果并不是很理想,由于數太多,讓學生觀察3的倍數的這些數時,并從中找出相同的地方,結果,很多同學找了與本節課毫無關系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數代表百數表,于是我設計了一個表格,讓學生用除法計算的方法找到3的倍數的特征,并觀察這些數,這些數的個位分別從0到9都有,讓學生知道3的倍數的特征跟數的個位沒有關系,然后從中又把像45和54,75和57,123和321等特殊的數單獨展示出來,讓學生觀察從中找出規律。結果我又重新上了這節課,效果比上節課要好。

  這節課結束后,我感覺最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。

3的倍數特征教學反思5

  今天我教學了3的倍數的特征,我首先復習2、5的倍數的特征,然后我出示了幾個不同的四位數,問生:誰能很快判斷出哪些是3的倍數?想知道有什么竅門嗎?這們引入課題很順當,學生也很有興趣。下面,我先讓學生寫出50以內3的倍數,再觀察:3的倍數有什么特點?學生一時很難發現,仍從個位上的數去觀察,但馬上被其他同學否定,當時我心里有點擔心怎么看不來呢?,我啟發學生再看看個位和十位上的數,通過交流后,在部分學生馬上發現把每個數的數字加起來的和除以3都是正好除的,我讓學生用這個發現對書上第76頁的表格100以內的數進行驗證一下,學生驗證后我又讓學生從100以外的數來驗證。從而得出了3的倍數的特征。再通過用1、2、6可以寫成哪些三位數?這些三位數是3的.倍數嗎?由此有什么發現?讓學生進一步明白3的倍數跟數字的位置沒有關系,只跟各位上數的和有關系。這樣學生在完成想想做做第5題時學生思考時就不會漏寫了。最后,通過后面的練習,我覺得在教學某些知識時,最好老師不要輕易下結論,只有讓他們自己在反復實踐中自己得出結論,才能牢固地掌握知識。

3的倍數特征教學反思6

  《3的倍數的特征》是人教版義務教材新課程第八冊的教學內容,對這節課的教學設計,有從2、5的倍數的特征中引入的、有讓學生通過擺火柴棒研究的,其中不乏好點子好設計。但是,大部分老師都要拋出一個問題讓學生思考:“火柴棒的總根數跟3的倍數有什么聯系?”或者干脆問“3的倍數和數位上的數字的和有什么關系?”總覺得教師對學生的引導過于直接,對于五年級的學生,經過這樣的提問,一般都能找到3的倍數的特征,也能用語言來表述。我認為,我們的關鍵不但要讓學生找到3的倍數的特征,更應該引導學生怎樣去發現數位上的數字的和與3的倍數之間的關系。我考慮,能不能在本節課中運用分類,讓學生自主探究呢?以下是兩個教學片段:

  教學片段一:

  讓學生用30秒時間,寫3的倍數,大部分學生都從小到大寫了25個左右

  老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務。

  師:請你給自己寫的3的倍數分類,看看能不能找到規律。限時2分鐘。

  (結束)學生回答。

  生1:3、6、9;12、15、18、21、24……按位數分類。(有3人和他一樣分)師:按位數分類,那么3位數里哪些是3的倍數呢:103、208是3的倍數

  嗎?(學生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

  (有32人和他一樣)

  師:你分類的標準是什么?

  生2:個位是0——9的都歸為一類,共兩類。

  生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。

  師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數,能迅速判斷嗎?(生無語)

  師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發現3的倍數的特征,是有價值的呢?(學生陷入沉思)

  以上學生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數的特征,卻沒有意義。大部分學生是從2、5的倍數的特征中受到啟示,這是學生的經驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學生,不要走彎路呢?我認為,負遷移也是一種寶貴的經驗,經歷過挫折,對知識的理解就會更加深刻,無需刻意回避。

  教學片段二:

  師:繼續觀察這些數,還有其它分類方法嗎?限時5分鐘。(陸續有學生舉手,5分鐘后,共有15位學生舉手,巡視一遍。)

  師:誰來介紹自己新的分類方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  師:你的分類標準是什么?

  生1:第一類,每個數數位上的數字的和是3;第二類,每個數數位上的數字的和是6;第三類,每個數數位上的數字的和是9;第四類,每個數數位上的數字的和是12;以此類推。

  師:誰來幫他“以此類推”?

  生2:每個數數位上的數字的和是15,也是3的`倍數;每個數數位上的數字的和是18,也是3的倍數。

  生3:每個數數位上的數字的和是21,也是3的倍數;每個數數位上的數字的和是24,也是3的倍數。

  師:你能用一句話來表達嗎?

  生4:每個數位上的數字的和是3、6、9、12、15、18等,這個數就是3的倍數。

  生5:每個數位上的數字的和是3的倍數,這個數就是3的倍數。

  師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(前5個)105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍數,105也是3的倍數。

  生5:1加1加1等于3,3是3的倍數,111也是3的倍數。

  ……

  (一個學生根據規律回答,其他學生用豎式驗證。)

  生6:3的倍數的特征是找到了,但這樣的分類太亂。我一共分3類:

  第一類:每個數數位上的數字的和是3:3、12、21、30;

  第二類:每個數數位上的數字的和是6:6、15、24、42、51;

  第三類:每個數數位上的數字的和是9:9、18、27、36、45……,

  這樣的數是3的倍數。

  師:那老師的這些數:339、504、918、1527、2442屬于哪一類呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數沒有超出這三類的。

  師:厲害!(讓其他學生說了兩個四位數,用他的方法來判斷是不是3的倍數,大概有三十個左右的學生能用這樣的方法分析。老師又舉了一個反例。)

  師:誰能用幾句話來概括?

  生6:一個數,每個數位上的數字的和是3、6、9,如果和大于9的,數位上的數再加,直到出現一位數,如果是3、6、9,那么這個數就是3的倍數。

  師:真佩服你們!

  第二天,有學生告訴我他發現了一種更快判斷3的倍數的方法,不用把數位上的數都加起來,比如538,3是3的倍數就不要管它了,只要5加8加一下,13不是3的倍數,538就不是3的倍數。我又說了一個五位數20xx,學生分析,6是3的倍數,不去管它,2加7是9,9是3的倍數,整個數就是3的倍數。

  學生的探究能力如此之強,是我沒想到的,學生快速判斷3的倍數的方法,實際上已經綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學生新的探究的開始。

  從本節課中,我有幾點小小的感悟:

  一、教師不要害怕學生探究的失敗。學生第一次探究的失敗,完全是正常的,這是他們運用已有的經驗,進行探究后的結果。盡管這種經驗的遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學中比比皆是,我們不但不能回避,而且要好好利用,要讓學生積累對數學活動的經驗,同時能將“經驗材料組織化”。

  二、教師要給學生創造探究的機會。學生的探究能力其實是老師意想不到的。最后一位學生對3的倍數的概括(一個數,每個數位上的數字的和是3、6、9,如果和大于9的,數位上的數再加,直到出現一位數,如果是3、6、9,那么這個數就是3的倍數。),盡管實際的意義不是很大,但是它更具有橫向的關聯,2的倍數特征是:個位是0、2、4、6、8的數是2的倍數;5的倍數的特征是個位是0或5的數是5的倍數。或許,這種類比聯想更容易讓學生理解新的知識,更何況是學生自己探究出來的。其實很多教學內容我們都可以讓學生進行探究,關鍵是教師如何給學生提供一個探究的載體,一種探究的環境。

  三、教師對學過的知識要經常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經常把學生學過的知識,在新知中不知不覺地再應用,再鞏固。溫故而知新,在復習與鞏固中,學生會對舊知有更高的認識,更深的理解,也容易排除學生對新知的畏難思想。同時要經常地對各種知識進行串聯,編織學生知識的網絡,使學生認識到各種知識之間是相互關聯相互作用的,以利于學生解決一些實際問題或綜合性問題。

  四、教師要經常在教學中滲透一些數學思想。分類是一種數學思想,同時也是一種數學思維的工具。人教版小學數學第一冊學生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標準,分類的原則,學生在不知不覺中有了感悟。借助分類,有40%的學生找到了3的倍數的特征,學生完全是在觀察、嘗試、驗證的基礎上探究的,是自主的行為研究。在小學數學中,滲透了很多數學思想,如集合、對應、假設、比較、類比、轉化、分類、統計思想等,在教學中合理地運用這些數學思想,對學生學習數學的影響是深遠的,也會讓我們的數學探究活動更有意義,更有價值。

3的倍數特征教學反思7

  《3的倍數的特征》的教學是在第一次教學之后,學校組織縣級教學能手選撥賽時候第二次上,可以說是“一課兩上”。我在第二次備課時完全從另一個角度來處理教材,收獲頗豐。下面我就本節課前后兩次上課反思如下:

  第一次上課我是讓學生圈出100以內3的倍數,去觀察3的倍數的特征,由此總結出3的倍數的特征,然后實際應用,鞏固練習。效果一般。而第二次上課時我是這樣做的:使學生在原有認知的基礎上產生認知沖突,在學習2、5倍數特征的.基礎上,讓學生猜測是不是3的倍數的特征也要去看數的個位呢,進而產生新的探索欲望,讓后在百數表中圈出3的倍數的特征,接著借助學生熟悉的計數器進行兩個實驗,實驗一:驗證3的倍數的特診,實驗二:驗證不是3的倍數的的數的特征。最后實踐應用,課堂檢測。

  整個教學過程突出了對學生“提出問題—探索問題—解決問題”的能力培養,學生能在猜想、操作、驗證、交流、反思、歸納的數學活動中,獲得較為豐富的數學經驗,也有助于創造性的培養。這就要求我們教師首先要具有創造精神,注重設計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發學生的創新欲望,學生的創造意識才能得以培養,個性才能充分發展。

  反思這節課的不足我覺得在每個環節的過渡上要做的更加自然、一氣呵成會更好。由于本節課按照賽教要求只有30分鐘,時間的把握做的還不夠恰到好處。總之,教無定法,學海無涯,需要我不斷的學習和實踐,不斷提高自身素質和專業水平,大力提高教學質量。

3的倍數特征教學反思8

  2、3、5倍數的特征我設計的是一節課,但上完這節課上完后,給我最大的感受,學生對2、5的倍數的特征不難理解,對偶數和奇數的概念也容易掌握,但我由于對教材的把握不夠,時間用到2、5倍數上的較多。以至于對3的倍數特征探究不到位。

  好的`開始等于成功了一半。課伊始,我設計了搶“30”的游戲,目的是讓學生從中找到3的倍數,但我發現這個游戲沒讓學生部明白要求沒有能提高學生的興趣。意義不到。數學學習過程中應該是觀察、發現、驗證、結論等探索性與挑戰性活動。首先讓學生獨圈出寫出100以內2、5的倍數,獨立觀察,看看你有什么發現?學生很容易發現他們的特征,而這只是猜測,結論還需要進一步的驗證。但我對這部分的處理太過于復雜零碎。以至于用的時間過多。比如說2、5倍數與其他數位的關系,著就不是本節課的重點。

  小組合作,發揮團體的作用,動手實踐、合作交流是學生學習數學的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學生的之一能力傾聽能等等還需進一步訓練。

3的倍數特征教學反思9

  1.以學生原有認知為基礎,激發學生的探究欲望。教師利用學生剛學完“2、5的倍數的特征”產生的負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2、5的倍數的特征”遷移到解決“3的倍數特征”的'問題,產生認知沖突,萌發疑問,激發強烈的探究欲望。本案例中,學生很快進入問題情境,猜測、否定、反思、觀察、討論,大部分學生漸漸進入了探究者的角色。

  2.以問題為中心組織學生展開探究活動。在上面案例中,教師注意突出學生的主體地位,教師依據學生年齡特征和認知水平設計具有探索性的問題,引導學生緊緊圍繞“3的倍數有什么特征”這個問題來開展學習活動,指導學生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發現、歸納規律、得出結論,培養了學生的探索意識和分析、概括、驗證、判斷等能力。

3的倍數特征教學反思10

  《3的倍數特征》進行了兩次教學授課,第一次是新授,第二次是錄課重復授課。下面就本節課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學生編號,根據編號做游戲。由于每個學生的編號不一樣,所以在做游戲的時候,每個學生集中注意力,傾聽游戲要求,激發了學生的學習興趣。設置游戲的目的是復習2或5倍數的特征,同時,對3的倍數特征的學習產生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學生充分地認識到依據2或5的倍數特征的思想已經行不通了,從而開始新的探索。在探索過程中借助“百數表”,讓學生獨立地圈出3的倍數,圈完后互相交流3的倍數的個位有什么特點,再次否定了之前的思維定式。由于個位上沒有特點,所以引導學生從其他的角度觀察,學生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發現,所以本節課中我關注到學生的思考困境,引導學生從斜著觀察的角度思考探索。當學生斜著觀察時能發現個位上的數字依次減1,十位上的數字依次加1,適時提出“什么是沒有變的?”問題一提出,學生恍然大悟,發現:個位和十位上的數的和沒有變!順其自然的知道了3的倍數具有這樣規律。經過研究每一斜行發現:個位和十位上的數的和不變,都是3的倍數。知道了這個規律后,下面開始延伸這個規律。一方面:驗證百數表內其他不是3的倍數是否具有這個規律?另一方面:比100大的數,三位數、四位數、五位數等是否具有這個規律?通過兩方面的驗證,再次強調了這個規律是普遍存在的,而這時3的倍數特征已經歸結為:一個數各位上的數的和是3的倍數,這個數就是3的倍數。知道了3的倍數特征之后通過練習鞏固加強,練習的設計是三道題,這三道題設計為不同的層次,第一題是基礎題,第二題是拔高題,第三題是解決問題。通過做題發現學生本節課掌握得不錯。最后,對本節課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學生明白為什么2或5的倍數特征只看個位就可以了,而3的倍數特征需要看所有數位。從而達到學知識不但要知其然還要知其所以然。整個教學過程中,學生能在猜想、操作、驗證、交流、歸納的數學活動中獲得豐富的數學經驗,同時這也有利于學生創造力的培養。通過本節課的教學以及學生的掌握情況,最終檢測本節課的目標較好的達成。但反思這節課的不足,我覺得在每個環節上的過渡應該更加的自然。另外,在小組討論的時候應多關注學生的交流,對學生進行適時地指導。基于第一節課的優點和不足,進行了第二次的授課即錄課。由于學生們已經學習了過本節課,所以對于學生們來說已經是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節課我做了適當的調整。本節課我更多關注的是數學方法和思維方式的培養。其中體現在:

  1、學生在舉例驗證猜想的時候,讓學生體會反例的作用,如果有一個反例的存在,就說明猜想的結論是錯誤的。

  2、在探索3的倍數特征時,對于100以內3的倍數,應如何著手驗證,怎么選取數來驗證,這一環節讓學生體會:在研究規律的時候,優先選擇數比較多的'這一組,讓學生明白如果有規律更容易探索和發現。

  3、在拓展規律的時候,采用舉了大量的數據,證明了規律的普遍存在,讓學生體會規律的適用范圍。

  4、在做練習的時候,第2小題,關注學生思考問題是否全面,關注學生的思考過程。

  5、練習的第3小題,一道解決問題的題目,通過讓學生讀題、審題、分析題之后,再思考。這一道題學生展示了多種的做題方法,體現了方法的多樣性,同時也說明學生的思維是活躍的。本節課中的不足,練習中第3題學生的做法沒有完全的在黑板上板書,另外,本節課中學生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學生還不夠。在今后的教學中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學水平,設計出學生更能接受和喜歡的課。

3的倍數特征教學反思11

  心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創設良好的課堂氣氛。

  教學3的倍數特征這一課時,教師組織學生進行下列鞏固練習:

  下列數中3的倍數有:()

  1435451003328767488

  學生利用3的倍數的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數的數最多,我們看誰能考倒老師。”這時同學們興趣盎然,紛紛出題來考老師。

  生:42

  師:111

  生:78

  師:57

  生:81

  師:20xx

  生:6891

  …………

  這時師故意出錯:369041

  學生馬上發現了這個數不是3的.倍數,師問:“你能不能改一改其中的某個數字使它成為3的倍數。”

  生:“可以將1改為2。”

  生:“可以將4改為5。”

  生:“可以將1改為5。”

  生:“可以將1改為8。”

  生:“可以將4改為2”

  生:“可以將4改為8”

  學生回答完后,我及時提問:“你們為什么不改其中的3、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數都是3的倍數,所以只要改4和1這兩個數就行了。”這時我及時指出:“判斷一個數是不是3的倍數可以用篩選法來判斷,在各數位的數字中先篩去3的倍數或和為3的倍數的數字,若余下的數字之和是3的倍數,原數就是3的倍數,否則就不是。”這時我逐漸地出示下列這組數要求學生馬上判斷是否3的倍數。

  56

  561

  5617

  56178

  561784

  5617849

  …………

  這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。

3的倍數特征教學反思12

  3的倍數的特征比較隱蔽,學生一般想不到從“各位上數的和”去研究,本課注重引導學生經歷探索的過程。上課開始先讓學生回顧舊知,2的倍數和5的倍數有什么特征,學生們發現都只要看一個數個位上的數就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數有什么特征呢?猜測是一種常用的數學思考方法,讓學生猜測3的倍數有什么特征,能較好地調動學生的學習積極性。由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數一定是3的倍數”,還有學生猜測:“各位上的數字加起來是3,6,9一定是3的倍數”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。

  下面進入驗證環節,先學生判斷自己的學號是不是3的倍數,再在這些學號中挑出個位上是0,3,6,9的數,通過交流這些數不一定都是3的倍數。學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢。于是進入到動手操作環節,在此基礎上,利用計數器轉移探索的方向,讓學生用3顆算珠在計數器上任意擺數,得出結果:擺出的數都是3的倍數,到這里有幾個學生顯得很興奮。隨后用5顆算珠實驗,發現擺出的數都不是3的倍數,到這里學生中已經有一些議論,他們都有了發現。為了讓更多的學生看出其中的神奇,我將自主權交給了學生們,自己選擇算珠的顆數進行了第三次實驗,然后板書出每組的實驗結果,從結果的數據中,學生們都很興奮地發現了所用算珠的顆數是3顆,6顆,9顆,撥出的數都是3的'倍數,每個數所用算珠的顆數,也是每個數各位上數的和。把算珠顆數抽象成各位上數的和,是理解3的倍數特征的關鍵。

  “試一試”是教學的第三步,如果一個數不是3的倍數,那么這個數各位數的和不是3的倍數。利用反例進一步證實3的倍數的特征,體現了數學的嚴謹性和數學結論的確定性。可惜在這一點上,我很倉促地指著黑板上算珠顆數是4顆,5顆,7顆,8顆時,所擺出的數都不是3的倍數,直接告訴了學生,而沒有讓學生自己舉出反例。隨后設計了一系列習題,使學生得到鞏固提高。

  整節課只能說順利地走了下來,對于教者我來說從中發現了自己教學上的不足之處,在今后的教學中,我將不斷學習,及時總結,虛心請教,以進一步提高自己的教學業務水平。

3的倍數特征教學反思13

  《3的倍數的特征》的教學是五年級數學上冊第三單元“因數與倍數”中一個重要知識點,是學生在學習了2和5的倍數特征之后的新內容。

  3的倍數的特征與2和5的倍數的特征有很大差別,2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我在本節課設計理念上,突出以學生為主體,教師為主導,方法為主線的原則,從現象到本質,從質疑到解疑。當然本節課也存在很多問題,下面我進行做幾點反思。

  1、瞄準目標,把握關鍵

  在導入環節,我通過復習舊知識進行“熱身”。由于學生已經掌握了2和5倍數的特征,知道只要看一個數的個位就能判斷一個數是不是2或5的倍數,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學生發現卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的愿望,這樣有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2、經歷過程,授之以漁

  猜想3的倍數特征是基礎,在學生得出猜想后,我便引導學生找出百數表中3的.倍數去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內即可發現3的倍數中,個位上可能是10個數字中的任何一個,之前的判斷已經站不住腳。之后繼續探究,在100以內,基本可以發現規律,但為了嚴謹,必須跳出百數表,在100以上的數中去驗證這個規律。最后,引導學生理解這個結論背后的原理,為什么它的規律和之前的規律不一樣?這樣一來,學生不僅學會本節課知識,更掌握了科學的探究方法。

  3、追求本真,知其所以然

  本節課的目標定位上,我考慮到學生的已有認知基礎,我決定引導學生探索3的倍數的特征背后的道理。這一嘗試建立在我對學生學情把握的基礎上,因為3的倍數的特征的結論一但得出,運用起來沒有難度,后面的練習往往成了“休閑時間”,而進一步提升探索難度,無疑是開發思維的良好契機。我運用數形結合的方法逐步深入,最后還是把話語權留給學生,這樣就給予不同學生各自適應的個性化學習方略,真正做到了讓每位同學在數學上都得到發展。

3的倍數特征教學反思14

  《3的倍數的特征》是五年級下冊數學第二單元“因數與倍數”中的一個知識點,是在學生已經認識倍數和因數、2和5倍數的特征的基礎上進行教學的。由于2、5的倍數的特征從數的表面的特點就可以很容易看出——根據個位數的特點就可以判斷出來。但是3的倍數的特征卻不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。

  因而在《3的倍數的特征》的開始,我先復習了2、5的倍數的特征,然后學生猜一猜什么樣的數是3的倍數,學生自然而然地會將“2.5的倍數的特征”遷移到“3的倍數特征的問題中,得出:個位上是3、6、9的數是3的倍數,后被學生補充到“個位上是0—9的任何一個數字都有可能是3的倍數,”其特征不明顯,也就是說3的倍數和一個數的個位數沒有關系,因此要從另外的角度來觀察和思考。在問題情境中讓學生產生認知沖突產生疑問,激發強烈的探究欲望。接著提供給每位學生一張百數表,讓他們圈出所有3的倍數,拋出問題:把3的倍數的各位上的數相加,看看你有什么發現,引導學生換角度思考3的倍數特征。接下來,經過進一步提示,引導學生觀察各位上數的和,發現各位上的和是3的倍數。于是,形成新的猜想:一個數如果是3的倍數,那么它各位上數的和也是3的倍數。

  為了驗證這一猜想,我補充了一些其他的數,如49×3=147,166×3=498等,使學生進一步確認這一結論的正確性。還可以任意寫一個數,利用這一結論來驗證,如3697,3+6+9+7=25,25不是3的倍數,而3697÷3也不能得到整數商,因此,它不是3的倍數。通過這樣的方式也使學生認識到:找出某個規律后,還要找出一些正面的、反面的例子進行檢驗,看是不是普遍適用。

  為了使學生更好地掌握3的倍數的特征,進行課堂練習時,我還把一些數各個數位上的數經過不同的排列,再讓學生判斷,以加深對“各位上數的`和是3的倍數”的理解。如完成“做一做”第1題時,學生判斷完45是3的倍數后,教師可以再讓學生判斷一下54是不是3的倍數。

  利用2、5、3的倍數的特征來判斷一個數是不是2、5或3的倍數,其方法是比較容易掌握的,但要形成較好的數感,達到熟練判斷的程度,也不是一、兩節課所能解決的,還需要進行較多的練習進行鞏固。

  這節課結束后,我感到自主學習和合作探究是這節課中最重要的兩種學習方式,學生通過自主選擇研究內容,舉例驗證等獨立思考和小組討論,相互質疑等合作探究活動,獲得了數學知識。學生的學習能動性和潛在能力得到了激發。在自主探索的過程中,學生體驗到了學習成功的愉悅,同時也促進了自身的發展。但最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化。

3的倍數特征教學反思15

  《3 的倍數和特征》一課是在學生自主探究2、5的倍數的特征的基礎上進一步學習,我從學生的已有基礎出發,把復習和導入有機結合起來,通過2、5的倍數特征的復習,設置了“陷阱”,引導學生進行猜想3的倍數的特征可能是什么,從而引發認知沖突,激發學生的求知欲望,經歷新知的產生過程。

  一、引發猜想,產生沖突。

  前一課時,學生在發現2、5的倍數特征時,都是從個位上研究起的,所以在復習舊知時,我也特意強調了這一點。接下來我引導學生猜想3 的倍數特征是什么時,不少學生知識遷移,提出:個位上是3、6、9的數應該是3 的倍數;3 的倍數都是奇數。提出猜想,當然需要驗證,很快就有學生在觀察百數表后提出問題:個位上是3、6、9的數只是有些是3的位數,有些不是3的倍數;有些偶數也是3的倍數,而有些奇數卻不是3 的倍數。學生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數表里找出3的倍數,不少學生就開始了繁雜的計算,這個環節我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數是否是3 的倍數。

  二、自主探究,建構特征

  找3 的倍數的特征是本節課的難點,我處理這個難點時力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,始終為學生創造寬松的學習氛圍,讓學生自主探索并掌握找一個3的倍數的'特征的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。

  在完成100以內的數表中找出所有3 的倍數后,我引導學生觀察發現3的倍數的個位可以是0~9中任何一個數字,要判斷一個數是不是3的倍數不能和判斷2、5的倍數一樣只看個位,打破了學生的認知平衡,然后我提出到底什么樣的數才是3的倍數這一問題。這個問題的解決需要借助計數器,于是我給學生準備了簡易計數器,讓學生多次撥數后,觀察算珠的個數有什么共同的特點。反應比較快的學生就有了發現:所用的算珠個數都是3 的倍數。在學生提出這個猜想后,全班學生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學生在驗證中掌握難點。同時,我也讓學生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學生的印象更深刻。這個教學環節在教師的引導下克服困難,解決了力所能及的問題,達到了新的平衡,開發了學生的創新潛能。

  在教學過程中讓學生自主探索,雖然用了很多時間,但我認為學生探索的比較充分,學生的收獲會更多。

  三、鞏固內化,拓展提高。

  在上述教學過程中,雖然每個同學只操作了一兩次,但是通過學生之間的合作交流,在教師的引導下,學生經歷了一個典型的通過不完全 歸納的方法得出規律的過程。學生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學習產生深刻的影響。

  在初步感知3 的倍數的特征后,我提出了問題:一個數,在計數器上撥出它,所用數珠的顆數是3的倍數,它就是3的倍數,對嗎?你是否認為我們研究出的結論對所有的數都適用呢?這兩個問題的提出,意義在于通過“更大的數”和“任意找”兩方面,使學生深切體驗了不完全歸納法的這一要義,同時也培養了學生縝密思考問題的意識和習慣。

【3的倍數特征教學反思】相關文章:

3的倍數的特征教學反思06-10

3的倍數特征教學反思03-19

《3的倍數的特征》教學反思04-11

倍數特征教學反思03-16

《3的倍數的特征》說課稿12-18

《3的倍數》優秀教學反思03-11

倍數與因數的教學反思11-07

因數和倍數教學反思04-11

《倍數和因數》教學反思04-11

久久一级2021视频,久久人成免费视频,欧美国产亚洲卡通综合,久久综合亚洲一区二区三区色
午夜性色福利免费视频在线播放 | 亚洲成l人在线观看线路 | 亚洲成AV大片大片在线播放 | 理论片第一页一区二区 | 三级三级久久三级久久 | 思思在线精品视频综合首页 |