- 相關推薦
作為一名到崗不久的老師,我們需要很強的課堂教學能力,通過教學反思可以有效提升自己的教學能力,那么優秀的教學反思是什么樣的呢?下面是小編為大家整理的倍數和因數教學反思,希望能夠幫助到大家。
倍數和因數教學反思1
《倍數和因數》,由于之前沒上過這冊內容,在看完教材后就和同組的老師說,這個內容好像挺簡單的。不過上完這節課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預設中沒有想到的問題,下面對自己的課堂做一些反思:
1.在第一個環節認識倍數和因數的意義中,首先讓學生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學生動手操作實踐,體現了以學生為本,而且能喚醒學生已有的知識經驗,抽象為具體討論的數學問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數和因數的關系,本來以為說:“4和3是12的因數,12是4和3的倍數”應該是很簡單的兩句話,學生應該會說,可是當請學生來自己選擇一個乘法算式來說一說時,好幾個學生卻被卡住了,還有的說成了4是12的倍數。
針對學生出現的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學都沒能看清楚;另一方面我預想的比較簡單,所以說了一遍后也沒請學生再復述一遍。在說到“誰是誰的倍數,誰是誰的因數”時應該在中相繼出示這兩句話,這樣的話讓學生看著說印象會更深刻,相信學生說的也會比較好。
2。第二個環節是探求找一個數的倍數的方法,從上一個環節我最后出示的除法算式中引入:我們知道了18是3的倍數,那3的倍數是不是只有18呢?通過疑問來激發學生找出3的倍數有哪些?學生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數找全呢?學生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數。在分別找到了2和5的'倍數后我問學生:觀察上面這幾個例子,你有什么發現?請了好幾個學生都沒能找到,最后還是老師告訴了學生倍數最小是?最大呢?
針對最后請學生找一找發現倍數的共同特點這一問題,我覺得我在設計時問題提得太大,太籠統。學生聽到問題后可能無從下手,不知道該找什么。可以問:剛才找了2,3,5的倍數,觀察這幾個數的倍數,他們有什么共同特點?這樣學生就會比較有針對性地去尋找結果。
3。第三個環節是探求找一個數因數的方法,找一個數因數的方法是本節課的難點,如何做到既不重復又不遺漏地找一個數的因數,對于剛剛對倍數因數有個感性認識的學生來說有是一定困難的,而這個環節我處理的也不到位,學生對找一個數因數的方法掌握的不夠好。
我一開始設計請學生自主找36的因數,在巡視時發現有一部分學生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經找過12的因數了,如果這里能用12做一下鋪墊,可能找36的因數時就會好一些。
在學生自主探索完36的因數有哪些后,交流不同學生的結果,有一位出現了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數的因數是一個很重要的方法,而我卻把這個方法忽略了,所以學生對于找一個數的因數的方法不夠深刻,在練習中也發現做的不理想。
4。第四個環節是鞏固練習,我設計了2個小游戲。一個是看誰反應快,符合要求的請學生起立,這個游戲學生參與面廣,學生也感興趣,還從中發現了找誰的學號是幾的因數,1每次都會起立,就更好的鞏固了一個數的因數最小是1。但是也有個別學生反應比較慢。第二個小游戲是猜一猜老師的手機號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。
原本認為簡單的課卻一點都不簡單,每個細小環節的把握都要求我去仔細的鉆研教材,設計好每一步,這樣才能上好一節課。
倍數和因數教學反思2
這個單元課時數比較多,對于學生數感的要求比較高,對于學生觀察能力,比較能力,推理能力的培養是個很好的訓練。通過一個單元的教學,發現學生在以下知識點的學習和掌握上還存在一些問題:
1、最大公因數和最小公倍數
教學中,我讓學生經歷了三種方法:法一是先找各數的因數(或倍數),再找兩個數的公因數(或公倍數),最后再找最大公因數和最小公倍數;二是介紹短除法;三是對于特殊關系的數(倍數關系或互質數)直接根據規律寫結果。根據復習和練習反饋,發現學生對數的感覺比較欠缺,特殊關系的數不容易看出來,且兩個概念有時還會出現混淆情況,也就是對因數和倍數的理解不夠透徹與深刻。如果學生對找最大公因數和最小公倍數學不扎實,將直接影響到后面的約分和通分。所以我準備在平時每節課都有三到五個訓練,并進行專項過關。在應用這個知識解決實際問題時,有少數后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。
2、質數合數與奇數偶數
這四個概念按照兩個不同的.標準分類所得。學生在分類思考時對概念的理解比較清晰,但混同在一起容易出現概念的交叉,如2既是質數又是偶數,9既是合數又是奇數。
3、235倍數的特征
如果單獨讓學生去說去判斷一個數是不是235的倍數,學生比較清楚,但在靈活應用時就比較遲鈍,特別是用短除法尋找公因數時,不能很快的進行反應,數的感覺不佳。
以上是本單元學生在學習過程中的主要障礙,數感的培養需要一個過程,而概念的理解加深還需要平時不斷的訓練。多給學生一點耐心,再堅持一份恒心,相信學生們會有提高,會有改變。
倍數和因數教學反思3
總的感覺是上好一堂課不容易。當確定好內容后,我和吳艷、顧志成三人各自備課,第二天放學后化了整整一個半小時討論教案,后又幾經修改,但總感到時間來不及。倍數和因數是學生聞所未聞的兩個新概念,是純知識性的內容,學起來比較枯燥。如何使學生通過四十分鐘愉快輕松的學習掌握這乏味的概念性內容,如何開頭,各部分之間怎樣銜接,每一個知識點采取何種形式呈現、展開,重點如何突出,難點如何突破,那幾天這許多問題始終盤繞在腦海中,課上下來根據學生的參與情況,掌握程度可以說達到了教學目標。我覺得整個課堂教學注意了以下幾點:
1、捕捉生活與數學之間的聯系,幫助學生理解概念間的關系。
試上下來我感覺學生對倍數因數間的相互依存關系理解不到位,看著學生我突然想到可以利用學生喬雨雷、喬風光兄弟間的關系呀,于是我把生活中的相互依存關系遷移到數學中的倍數和因數,這樣設計自然又貼切,既讓學生感受到了數學與生活的聯系,初步學會從數學的角度去觀察事物、思考問題,激發對數學的興趣,又幫助學生理解了倍數因數之間的相互依存關系。
2、注意引導學生進行有效的合作學習。
動手實踐、自主探索、合作交流是新課程倡導的學習方式,公開課不管上的什么內容,不管有沒有必要往往都要叫學生討論,看起來熱熱鬧鬧,其實有多少學生真正參與了討論。往往是一組中的優等生把答案說出,其他學生洗耳恭聽。當3、2、5的倍數寫出來后,我問:“整體觀察這幾個數的倍數,你認為一個數的倍數有什么特點?”首先問題有討論的價值與必要性,其次當問題提出后我先讓學生獨立思考,看到學生陸續舉手時,再組織學生討論交流,完善自己的想法。(其實這是我一貫的做法,必須在每個學生獨立思考的基礎上進行合作學習。)
3、內容環環相扣、過度自然流暢。
從生活中的相互依存關系遷移到數學中的倍數因數,從而揭示課題,引出誰是誰的倍數,誰是誰的因數,到找一個數的`倍數或因數,歸納找的方法。整個教學過程環環緊扣、一氣呵成,通達順暢。
4、練習設計由易到難,由淺入深,既鞏固了新知,又發展了思維。
“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養了學生的發散思維能力。讓學生判斷自己的學號數是哪些數的倍數,老師手里拿了2、3、5幾張數字卡片,老師出示卡片,如果學生的學號數是老師出示卡片的倍數就可以站起來。最后留下了學號是1、7、11、13、17、19、23、29、31、37、41、43、47的學生,讓學生想辦法如果他們也要站起來,老師出示的卡片上應是幾?學生面對問題積極思考,享受了數學思維的快樂。
疑問:一開始的擺12個小正方形拼成長方形,得出三個積是12的乘法算式,我想這里的操作可否省去?一方面用去時間較多,對教學內容關系不大,如果說是培養操作能力也不是在這個時候。另一方面這堂課練習時間比較少,擠出的時間可用于練習。
我想如果我們每堂課都能精心設計的話,對學生對我們教師都會有很大的提高。
倍數和因數教學反思4
蘇教版課程標準數學實驗教材八年級(下冊)“倍數和因數”與老教材比較有較大的變化。傳統的教材按除法—整除—約數和倍數的順序安排,課程標準數學實驗教材是按操作—乘法—倍數和因數的順序編寫,倍數和因數的概念建立在直觀模型之上。教材的變化呼喚教師教學理念的更新和教學方法的改進。筆者四次執教該課,對教學內容和呈現形式作了微調處理并重視與學生平等對話,最終取得了比較好的效果。
1.例3中36的因數如何書寫?
第一次試上時我采用了從小到大依次書寫的方法,第二次試上時我采用了一對一對書寫的方法:1、36,2、18,3、12、4、9、6。第一種方法便于學生發現一個數的因數的特征,但書寫時比較麻煩;后一種方法書寫起來比較方便,但由于因數不是按大小順序排列,所以不利于學生發現一個數因數的特征。后面的教學中我對寫法作了微調處理:即一對一對書寫,但是從兩邊向中間書寫,最后按從小到大的順序排列。實踐證明效果很好,既注重了順序,也兼顧了方法,且有利于學生發現一個數因數的特征。
2.到底要讓學生發現什么?
在教學完例2、例3及其各自的“試一試”后,教材都呈現問題:“觀察上面幾個例子,你有什么發現?”不少教師認為只要學生能發現教材上揭示的幾條一個數的因數或倍數的特征就行了,但我認為,發現的.結果不應完全局限于教材上揭示的幾條特征。因為發現的過程是學生主動參與的過程,是學生通過經歷、觀察、猜測、概括等活動獲得知識的過程,這一過程是自由的、開放的。我對這一教學內容的微調處理是:放手讓學生去探索發現,對于學生的觀點只作最后的評判,并選擇幾條正確的結論揭示在黑板上(當然包括教材中的結論)。事實證明,這樣的微調處理激活了學生的潛能,彰顯了學生的個性。
3.“有限”和“無限”的結論怎樣呈現?
讓學生認識“一個數的倍數的個數是無限的”和“一個數的因數的個數是有限的”,教材是分開編排的,即在學習找一個數的倍數后學習前者,在學習完找一個數的因數后再學習后者。我認為在學生學會找一個數的倍數和因數以后,結合板書比較,學生對“有限”和“無限”的理解更加深刻,教學的過程也更加順暢。實踐證明,這一微調處理也更符合學生的認知需求。
與學生平等對話是一種有效的教學方式。傳統的問答式教學,學生大多以被動的方式接受學習,很難自己確定思考的方向;有時問答的頻度過高,不利于學生對問題作深度思考。對話的教學方式則不然。當學生進入對話狀態時,他們能積極主動地與同學或教師進行交流,在思維的碰撞中,對問題的認識易于走向深入。現記錄學生觀察36、15和16這三個數的因數后的對話。
生:我認為雙數的因數中都有2。
師:真聰明!
生:我發現雙數的因數是成對成對出現的,而單數的因數個數也是單數。
生:我認為不對,因為單數15的因數個數是4個,4是雙數。
生:單數的因數全部是單數。
師:是嗎?大家再找個單數,寫出它的所有因數,看看他的發現是否正確。
學生驗證檢查后,發現是正確的。我及時地表揚了這個學生。
生:我發現1是任何自然數的因數。
師:真了不起,1是任何自然數的因數。再看看一個數的因數中1的大小怎樣?
生:最小。
師:那么我們可以說一個數最小的因數是幾?
生:一個數最小的因數是1。
生:一個數最大的因數就是它自己。
教師引導學生觀察后,共同作出肯定的評價。
師:一個數最大的因數是它自己,這句話,我們又可以說成,一個數最大的因數就是它本身。
生:老師,我還發現一個數最大的因數又是它的倍數。
學生的精彩發言大大出乎我的意料。我想這與教學中平等的對話氛圍是分不開的。首先,我把自己定位在與學生平等的話語地位上,用“仰視”的姿態去欣賞學生的發言,讓學生心理放松,敢想敢說。其次,絕不輕易打斷學生的發言。不管學生的發現在不在點子上,只要他有觀點要表達,都要讓他把話說完。再次,不失時機地通過鼓勵和表揚等方式肯定學生的對話成果,即使認識上有錯誤,也要肯定他敢于發表觀點的勇氣。最后,為使對話緊緊圍繞主題,注意及時進行適當的引導點撥(引導點撥不能太多,多則會經常打斷學生的思維)。比如,在學生發現,1是任何自然數的因數后,我及時表揚他的發現“真了不起”,同時,通過引導學生“看看一個數的因數中1的大小怎樣”,把學生的觀察引向一個數最小的因數和最大的因數。教師的適當點撥有益于對話的順利推進,有益于學生的認識不斷深入。
倍數和因數教學反思5
《倍數和因數》這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數倍數,而現在是在未認識整除的情況下直接認識倍數和因數的。數學中的“起始概念”一般比較難教,這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現實生活中又不經常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節課我在教學中充分體現以學生為主體,為學生的探究發現提供足夠的.時空和適當的指導,同時,也為提高課堂教學的有效性,這節課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學設計上的反思和一些初淺的想法。
比如在認識“因數、倍數”時,不再運用整除的概念為基礎,引出因數和倍數,而是直接從乘法算式引出因數和倍數的概念,目的是減去“整除”的數學化定義,降低學生的認知難度,雖然課本沒出現“整除”一詞,但本質上仍是以整除為基礎。本課的教學重點是求一個數的因數,在學生已掌握了因數、倍數的概念及兩者之間的關系的基礎上,對學生而言,怎樣求一個數的因數,難度并不算大,因此教學例題“找出18的因數”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結合自己對因數概念的理解,找到解決問題的方法(培養學生對已有知識的運用意識),然后在交流中不難發現可用乘法或除法來求一個數的因數(列出積是18的乘法算式或列出被除數是18的除法算式)。在這個學習活動環節中,我留給了學生較充分的思維活動的空間,有了自由活動的空間,才會有思維創造的火花,才能體現教育活動的終極目標。
新課標實施的過程是一個不斷學習、探究、研究和提高的過程,在這個過程中,需要我們認真反思、獨立思考、交流探討,學習研究,與學生平等對話,在實踐和探索中不斷前進。
倍數和因數教學反思6
今天這堂課其實是有點匆忙的。課前的一個小游戲忘了,忘了讓學生體會因數和倍數之間的相互聯系和依存關系了。明天的課上補上。
滿意的一點:模式的提練
在讓學生根據算式說了誰是誰的倍數,誰是誰的因數之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學生用一道算式提練出因數和倍數之間的關系。結果學生都不知道如何表達。我把算式板書上黑板上,是因數×因數=倍數。而后,我又轉過去用一道除法算式36÷9=4來讓學生找一找誰是誰的因數,誰是誰的倍數,學生的反應都不錯,馬上就明白了因數和倍數之間的關系。
不滿意的地方在于:對于找出36所有因數的有序思考沒有強調。當我讓學生們自主找出36的所有因數時,許多學生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學生的作業加以板書,讓學生進行比較。
如:1、36、2、18、3、12、4、9、6
1、2、3、4、6、9、12、18、36
和36÷1=36,36÷2=18,36÷3=12
36÷4=9,36÷6=6
尤其是最后一種方法,我特別注意讓學生評價一下這種思考方法的`正確性。得出結論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數的提取,由此過渡到評價第一種方案和第二種方案,在這兒,我特別示范了一下寫因數的方法,即從兩邊向中間包圍。學生們在比較中找出了寫因數的方法,明白了寫出因數的格式。本來可以相機在這一步讓學生體會尋找因數的有序性,結果一急,只是帶過了一句。今天在補充習題上出現了問題,我抓了幾個學生問為什么強調有序性,學生告訴我:因為可以看得清楚,因為不會遺漏。看起來班上的學生有這方面的意識,在做題目的時候還應該再稍稍提點一下,應該也就不成問題了。
《因數和倍數的練習》教學反思 4月14日
昨天新學了因數和倍數,我覺得課上學生表現還可以,很會說,但到了家自己做家作時,問題很多。今天進行了練習后,效果截然不同。我在練習前,首先對昨天的內容進行了復習。讓學生進一步明確:1、講因數和倍數時應該講清誰是誰的倍數或因數。2、找一個數的倍數和因數時,倍數最小的是它本身,其它都比它大,因數最大的是它本身,其它都比它小,最小是1。學生書上練習時,提醒學生弄清每題的具體要求,有些題只要寫出一個數部分的倍數,而有些題需要寫出全部的倍數。有些符合要求的數不止1個,要盡可能把這些數都找出來。但學生有時找不全,我就教會學生這樣思考:找一個數的倍數時用乘法,找一個數的因數時用除法。效果還可以。
今天教學了因數和倍數一課,這節課的內容關鍵是讓學生在掌握因數、倍數的概念的基礎上學會找一個數的因數和倍數。就總體情況而言教學效果還可以,但多少還是存在遺憾。
存在問題:在寫出了算式3*4=12后出示“3是12的因數,4也是12的因數;12是3的倍數,12也是4的倍數。”后讓學生閱讀,復述后讓學生觀察尋找記憶的方法,學生總結:像這樣的乘法算式我們可以說兩個乘數都是積的因數,積是兩個乘數的倍數。再讓學生用因數、倍數同桌復述算式2*6=12,1*12=12中數與數的關系,全班交流復述,學生說的蠻好的,可是在分層練習時再讓學生描述其他算式中各數的關系時,又部分學生混淆了因數、倍數的概念。看來開始的復述學生純粹是無意識的模仿,是為模仿而模仿,教師沒有在學生模仿復述后進一步讓學生思考為什么可以這樣描述這些數之間的關系,例如:為什么12是3和4的倍數,還能說12是2和6的倍數?……如果加了這層思考,學生就會理解只要是兩個整數相乘等于12,12就是這兩個整數的倍數,這兩個整數就都是12的因數。這樣才能讓學生真正理解乘法算式中各整數之間的關系。
滿意之處:學生在找一個數的因數和倍數時花費的時間不多,但在交流方法時我舍得花費較多的時間讓學生比較各自的方法,在此基礎上選出不會重復、遺漏的簡便方便用學生的名字命名這些方法。再讓學生分別使用這些方法尋找,真實感受這些方法的好處。學生郵箱比較深刻,在后面的分層練習和檢測中沒有學生出現漏或重復的,而且速度也很快。學生的積極性很高,學生的積極性的大小與他獲得成功的概率的大小有直接關系的。
倍數和因數教學反思7
《倍數和因數》這一章是人教版五年級下冊的內容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節復習課分以下四部分。
1、先從自然數入手,由自然數的概念讓學生總結自然數的個數是無限的,最小的自然數是0,沒有最大的自然數。又根據生活實際試著讓學生把自然數分成奇數和偶數。點名說出什么數是奇數,什么數是偶數,是根據什么分的,這樣有一種水到渠成的感覺。
2、由偶數都是2的倍數,復習2的倍數的特征,5的倍數的特征,3的倍數的特征。學生邊復習老師邊板書,由于大家共同協作,很快找出一個數的最小倍數是它本身,沒有最大的.倍數。然后總結同時能被2、3整除的數就是6的倍數,引出倍數和因數的意義。讓學生隨便說一個算式,說明誰是誰的倍數,誰是誰的因數”,學生列舉乘法或除法算式,準確表達倍數與因數的關系,加深了學生對倍數與因數相互依存關系的理解和認識。
3、隨便給出一個數找出它的所有因數,得出一個數最小的因數是1,最大的因數是它身。根據因數的個數把自然數分成質數、合數和1。復習什么是質數,什么是合數。最小的質數是幾,最小的合數是幾。20以內的質數。為什么1既不是質數也不是合數。這是根據什么分類的呢?任意給出一個數判斷是質數還是合數,若是合數讓學生分解質因數。先說分解質因數的方法,然后點名學生板演,教師巡視。指出錯誤。
4、帶領學生一起做練習,讓學生邊做邊說思路。這節課比較好的地方是條理清晰、內容全面;練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。
不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。
倍數和因數教學反思8
《因數和倍數》是人教版小學數學五年級下冊第二單元的起始課,也是一節重要的數學概念課,所涉及的知識點較多,內容較為抽象,對于學生來說是比較難掌握的內容,在這樣的前提下,如何能充分發揮學生的主體作用,讓他們自主探索,自己感悟概念的內涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領會意圖,做到用教材教。
我覺得作為一名教師,重要的是領會教材的編寫意圖,靈活的運用教材,讓每個細節都能發揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數,誰是誰的倍數”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數倍數的方法,二是利用數與數之間的關系明確的`看到因數倍數這種相互依存的關系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現因數倍數間的關系,更是后面“如何求一個數的因數”的方法的滲透和引導。看來靈活的運用教材,深放領會意圖,才能使教學更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設法,在不知不覺中體現出來。
如本課中例1是“求18的因數有哪些”,例2是“求2的倍數有哪些”教材的設計已經能夠體現學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數“因數和倍數”的求法的不同,比先學例1再學例2的方式更容易讓學生發現不同,得到方法,加深對知識的理解,同時也更加體現了學生的自主性,這才是模式的真正目的所在。內涵比形式更重要,發現比引導更有效!
倍數和因數教學反思9
教學中我發現倍數和因數這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎上認識因數倍數。而這里的處理的方法有所不同,我在教學時做了一些改動,讓學生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學生的算是就不局限于乘法,有一部分學生寫了除法算式。這樣學生很容易感悟到不管是根據乘法還是除法算式都可以找到因數和倍數。因為現在也有很多學生學習奧賽,所以我從整除的角度也介紹了因數與倍數的'概念.
由于這節是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動的接受。如讓學生思考:你覺得3和12、4和12之間有什么關系呢?(對乘除法學生有著相當豐富的經驗,因此不少學生能說出倍數關系,可能說得不很到位,但那是學生自己的東西)。當學生認識了倍數之后,我進行了設問:12是3的倍數,那反過來3和12是什么關系呢?盡管學生無法回答,但卻給了他思考和接受“因數”的空間,使學生體會到12是3的倍數,反過來3就是12的因數,接下來4和12的關系,學生都爭者要回答。
如何做到既不重復又不遺漏地找36的因數,對于剛剛對倍數因數有個感性認識的學生來說有一定困難,這里可以充分發揮小組學習的優勢。先讓學生自己獨立找36的因數,我巡視了一下五分之一的學生能有序的思考,多數學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數,如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這不比老師給予的有效得多。
倍數和因數教學反思10
反思教學效果總結了的原因有以下幾點:
(一)素數和合數的判斷不熟練。一些數如:49、51、91這些數看上去是素數,但其實是合數。這些數經常被學生誤認為是素數而導致錯誤,原因是這些學生就簡單的看看,而不愿意用2、3、5等素數去嘗試,努力尋找是不是有第3個因數存在。
(二)意思相同,但語句表述不同時,有的學生就不能正確理解。如:在上面的數只有兩個因數的數有哪些?其實這道題目就是問在上面的數中素數有哪些。
(三)有的學生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數肯定是奇數。如果一個學生先找到1的倍數,然后根據數的特點作出正確的判斷。但有的學生看到1是個奇數,然后就簡單地做出它的倍數也是奇數想法。例如:一個數的倍數一定比它的因數大。如果學生找一個數,看看它的最小倍數是哪個?找找它的最大因數是哪個?這樣不難找到正確的答案。但是有的倍數簡單地被題目的意思誤導,加上平時的練習中還有倍數一般都是大的,因數一般都是小的概念,學生容易誤判。
教學中,我和學生有時太滿足于平時練習的結果,而缺少讓學生進行數學思考和表達能力的過程訓練。看來在以后的教學中,我要繼續改變教學觀念,要高度尊重學生,依靠學生,把以往教學中主要依靠教師轉變為依靠學生。
建議
1、在新知教學中,注重引導學生進行探究。在本單元中找一個數的倍數和因數,都有比較好的方法。如何通過學生的探究找到方法,成了教學的亮點。如“找36的因數” ,找一個數的因數是本課的難點。應該說,找出36的幾個因數并不難,難就難在找出36的所有因數。教學中,建議教師不要把方法簡單地告訴學生,而是讓學生獨立去探究,獨立寫出36的所有因數,在學生反饋的基礎上教師再引導學生對有序和無序作比較,學生才能在比較、交流中感悟有序思考的必要性和科學性。交流的過程正是學生相互補充、相互接納的過程,是對學習內容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數與倍數知識的過程,又是培養學生良好思維品質的'過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創性的培養;引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養;既有遷移于擺方塊的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養了學生思維的靈活性。
2、寓教于樂,游戲中進行相應的鞏固練習。本節課是一節概念課,內容比較枯燥,課本上的練習形式也比較單一,所以在認識倍數和因數后,應安排有趣味的游戲,比如數字轉盤游戲,讓學生看轉盤說指針停止時,內圈的數與外圈的數的關系,進一步認識倍數和因數,又能從中發現倍數和因數的相互依存的關系。在學會找倍數和因數之后也可設計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數的號碼中已知其中四位,根據有關倍因數關系的問題請學生找出未知的四位號碼,以提高學生學習的積極性,稍有難度的練習給學有余力的學生一個證明自己能力的機會,讓學生在數學活動中體驗到數學學習的趣味性和挑戰性,學生運用所學知識解決問題,體會到了學習新知識后的成就感。
3、教師要注重評價的導向作用,讓學生在評價中成長。在第一課時學生交流12的因數時,教師展示了三位同學的作業:第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學生說說自己的想法,并讓其他同學評論,此時大多數學生的評價都認為不好,找得缺漏、無序,這時其實作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經常注意這樣引導評價,學生自然而然地意識到要先看別人的優點,再看別人的缺點,也給了剛才那位學生一個心理上的安慰,使他能更積極地投入到學習當中去。
倍數和因數教學反思11
XXXX小學 XXXXX
教學內容:教材例1、例2
教學目標
1.知識與技能:讓學生初步理解因數和倍數的概念,掌握找因數和倍數的方法。學會用列舉法找一個數的因數和倍數。
2.過程與方法:借助直觀圖,先引導學生觀察后列出乘法算式,最后結合乘法算式來理解因數與倍數的概念。
3.情感、態度與價值觀:理解因數和倍數的意義能及兩者之間相互依存的關系。
教學重點:理解因數和倍數的概念。
教學難點:掌握求一個數的因數和倍數的方法。
教學方法:啟發式教學法、指導自主學習法。
教學準備:多媒體。
教學過程:
一、新課導入:
1.出示教材第5頁例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導觀察例1中的算式,你發現了什么?(都是除法算式)
(2)分類:你能把上面的除法算式分類嗎?
學生分類后,教師組織學生交流,引導學生根據是否整除分為以下兩類
第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節課我們就來學習有關數的整除的相關知識。(板書課題:因數和倍數)
二、探索新知:
(一)、明確因數與倍數的意義。(教學例1)
1. 教師引導。教師指出:在整數除法中,如果商是整數而沒有余數,我們
就說被除數是除數和商的倍數,除數和商是被除數的因數。例如:12÷2=6,我們說12是2和6的倍數,2和6是12的因數。
2. 學生嘗試。
教師讓學生說一說第一類的每個算式中,誰是誰的因數?誰是誰的倍數?先同桌互相說一說,再組織全班交流。
3. 深化認識。師:通過剛才的說一說活動,你發現了什么?
引導學生體會:因數和倍數雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數,誰是倍數,而應該說誰是誰的因數,誰是誰的倍數。例如,30÷6=5,30是6和5的倍數,6和5是30的因數。教師強調,并讓學生注意:為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括O)。
4. 即時練習。指導學生完成教材第5頁“做一做”。
小結:如果a÷b =c(a,b,c均是不為0的自然數),那么a就是b和c的倍數,b和c是a的因數。因數和倍數是相互依存的。
(二)、探索找一個數因數的方法。(教學例2)
1. 出示例2:18的因數有哪幾個?
(1) 學生獨立思考。
師:根據因數和倍數的意義,想一想18除以哪些整數的結果是整數。
18÷1=18,l和18是18的因數;18÷2=9, 2和9是18的因數;18÷3=6, 3和6是18的因數。引導學生把18的因數按從小到大的順序排列,每兩個因數之間用逗號隔開,全部寫完后用句號結束,即18的因數有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時教師要讓學生說明找的方法,引導學生認識:只要想18除以哪些整數的結果是整數,并且要從1開始,一對一對地找,避免遺漏。如果學生還有其他想法,只要合理,教師都應給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來表示18的全部因數。明確:用圖示法表示18的因數時,先畫一個橢圓,在橢圓的上面寫上“18的因數”,再把18的因數按從小到大的順序有規律地寫在橢圓里,每兩個因數之間也用逗號隔開,全部寫完后不加句號。
(4)練習。讓學生找出30的因數和36的因數,并組織交流。
30的因數有1,2,3,5,6,10,15,30。
36的因數有1,2,3,4,6,9,12,18,36。
三、鞏固練習
指導學生完成教材“練習二”第1、6題。學生獨立完成全部練習后教師組織學生進行集體證正。
四、課堂小結
師:通過本節課的學習,你有什么收獲?
板書設計:
因數和倍數
12÷2=6 12是2和6的倍數
2和6是12的因數 18的因數有1,2,3,6,9,18。
一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
作業:教材第7頁“練習二”第2(1)題。
第二單元:因數和倍數
第二課時:因數與倍數(2)
教學內容:教材P6例3及練習二第2(1)、3~8題。
教學目標:
知識與技能:通過學習,使學生能自主探究,找出求一個數的倍數的方法。 過程與方法:結合具體情境,使學生進一步認識自然數之間存在因數和倍數的關系,掌握求一個數的因數和倍數的方法。
情感、態度與價值觀:初步學會從數學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養學生概括、分析和比較的能力,使學生體會數學知識的內在聯系。
教學重點:掌握求一個數的倍數的方法。
教學難點:理解因數和倍數兩者之間的關系。
教學方法:啟發式教學法、指導自主學習法。
教學準備:多媒體。
教學過程:
一、復習導入
10,28,42的因數有哪些?你是用什么方法找出這些數的因數個數的?一個數的因數中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數的方法。(教學例3)
出示例3:2的倍數有哪些?
師:你會找2的倍數嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數,所得的積就是2的倍數。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數全部寫出來嗎?
師:為什么?(因為2的倍數有無數個)
師:怎么辦?(用省略號)
師:通過交流,你有什么發現?
引導學生初步體會2的倍數的個數是無限的。
追問:你能用集合圖表示2的倍數嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數和5的倍數,并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據錯例進行適時剖析。
4.反思提煉。師:從前面找因數和倍數的.過程中,你有什么發現?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數的最小因數是1,最大因數是它本身。
(2)一個數的最小倍數是它本身,沒有最大倍數。
(3)一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
三、鞏固提升
1.指導學生完成教材第7~8頁“練習二”第4、5、6、7題。
學生獨立完成全部練習后教師組織學生進行集體證正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數有哪些?”和“15是哪些數的倍數”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數的倍數的個數是無限的,第(4)小題也是錯的,因為在研究因數和倍數時,我們所說的數指的是自然數,不含小數。
(3)思考題:兩數如果都是7(或9)倍數,它們的和也一定是7(或9)的倍數,即如果兩數都是n的倍數,它的和也是n的倍數。
2.利用求倍數的方法解決生活中的實際問題
出示:媽媽買來幾個西瓜,2個2個地數,正好數完,5個5個地數,也正好數完。這些西瓜最少有多少個?
理解題意,分析解答。
教師提示“2個2個地數,正好數完,說明西瓜的個數是2的倍數,5個5
倍數和因數教學反思12
本單元涉及到的因數、倍數、質數、合數以及第四單元中出現的最大公因數、最小公倍數都屬于初等數論的基本內容。是學生通過四年多數學學習,已經掌握了大量的整數知識,包括整數的認識、整數四則運算的基礎上進一步探索整數的性質。
在教學中,通過教授學生認識“因數和倍數”,并掌握他們的特征:因數和倍數不能單獨存在,并通過觀察比較幾個數的因數(或倍數),知道幾個數公有的因數(或倍數)叫做他們的公因數(或公倍數),且能夠在幾個數的因數(或倍數還)中找出他們的公因數(或公倍數)。
接下來學習“2、3、5的倍數的特征”。發現2、5、3倍數的規律和特點。在此之前還要向學生教學什么是“奇數”什么是“偶數”,只有掌握了奇數與偶數,學習“2、5的倍數”的特征就會簡單容易得多。而“3的倍數”的特征就是引導學生把各個數位上的數相加,的到的數如果是3的倍數的話,說明這個數就是3的倍數。
那么,又如何讓學生學習掌握質數與合數呢?在教學中,我主要是讓學生把1~
20的因數分別寫出來,并按照奇數為一列偶數為一列來讓學生進行觀察比較,然后歸類整理:只有1個因數的有哪些數?有兩個因數的有哪些數?有3個以上因數的有哪些數?學生分好之后,教師明確:向這樣只有2個因數的數叫做質數,有2個以上因數個數的數叫合數,1既不是質數也不是合數。那么自然數按因數的'個數來分就可以分為“1、質數、合數”三大類。
為了讓學生鞏固質數與合數,再讓學生找出1~100以內的所有質數:先劃掉除了2以外所有2的倍數,再劃掉3的倍數、劃掉5的倍數、最后劃掉7的倍數,所剩下的數就是質數,并且讓學生數出、記住100以內有25個質數。也可以用同樣的方法去判定100以外的數是質數還是合數。
最后,再學生講解介紹“分解質因數”,知道用短除法來分解質因數。然后對整個單元所學的知識進行梳理、歸類,讓學生熟記一些特殊的規律與數字,多做一些練習,加強的后進生的關注和輔導。
倍數和因數教學反思13
本節課是在學生已經學習了一定的整數知識的基礎上進行教學的。
課堂中,我首先讓學生理解分類標準,明確因數和倍數的含義。在例1教學中,首先根據不同的除法算式讓學生進行分類,同時思考其標準依據是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數,另一類是商是小數;第二種是分為三類:一類商是整數,一類是小數,另一類是循環小數。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據第一類情況得出倍數和因數的含義,特別強調的是對于因數和倍數的含義要符合兩個條件:一是必須在整數除法中,二是必須商是整數而沒有余數。具備了這兩個條件才能說被除數是除數的.倍數,除數是被除數的因數。
其次,厘清概念倍數和幾倍,注重強調倍數和因數的相互依存性。在教學中可以直接告訴學生因數和倍數都不能單獨存在,不能說2是因數,12是倍數,而必須說誰是誰的因數,誰是誰的倍數。對于倍數與幾倍的區別:倍數必須是在整數除法中進行研究,而幾倍既可以在整數范圍內,也可以在小數范圍內進行研究,它的研究范圍較之倍數范圍大一些。
本節課的不足之處:
1.練習設計容量少了一些,導致課堂有剩余時間。
2.對因數和倍數的含義還應該進行歸納總結上升到用字母來表示。
倍數和因數教學反思14
《倍數和因數》是我們工作室四月份研究的一個課例,我們是先抽簽上二十分鐘的課堂教學,再進行研討,我們研究了每一部分的處理方法,同時,為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環節,嘗試找到更加恰當的處理方法。那次研究之后我們工作室的每一位成員都根據自己的想法修改了教案。前幾天我們工作室又在活動中上了這節課,這次上課的是我,由于事先準備的不夠充分課堂中發現了很多的問題,有上次研討過還需要改進的問題,也有這次上課出現的新問題。課后工作室的成員給了我很多的很好的建議,我根據好的建議修改了我的教學設計,下面我來具體的說一說。
1、情境導入。本節課的內容是《倍數和因數》為了讓學生更清楚地感受倍數和因數的依存關系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學生的例子。但這兩個例子對于本課的教學或許沒有太多的意義,好像不能讓學生明確感受出倍數的因數的依存關系,所以我們可以把這一部分的內容去掉,直接進入課堂,讓學生進行操作活動。
2、倍數和因數的意義。本課是想通過用12個完全相同的正方形拼成長方形的活動來讓學生在活動中初步感知倍數和因數的關系,再用具體的例子向學生說明倍數和因數的含義。在課堂中我直接讓學生進行操作,兩人小組活動,試著擺一擺,看看有沒有不同的擺法,在交流的時候讓學生說說自己的擺法,每排擺了幾個,擺了幾排,怎樣用乘法算式表示,再讓學生有序地說一說,為后面找一個數的因數做好鋪墊。再有一道具體的算式舉例說明倍數和因數的含義,用我們過去學習的乘法算式中的乘數乘乘數等于積過渡到倍數和因數,再讓學生說一說其他兩道乘法算式。說完后再給學生一個提醒,并讓學生再根據出示的算式說一說誰是誰的倍數和誰是誰的因數,最后的時候讓學生自己寫一個算式,并說一說。
3、找一個數的倍數。這應該時本節課的重難點內容,在教學中一定要讓學生說一說找倍數的方法,而我在上課的時候把這一個重要的部分一帶而過,可以看出來很大一部分學生是沒有掌握找倍數的方法的`。所以我在思考這一難點該如何突破?是不是應讓學生先獨立想一想辦法,多說一說,給學生足夠多的時間讓學生去說自己用來找倍數的方法,這樣多種方法出來以后,我們可以對方法進行優化,選擇快速簡單的找法。在教學的時候,同時注培養學生有序寫出倍數,注意倍數書寫的格式等意識,可以比較有序的找和無序的找,讓學生自己感受有序的好處,學生有了有序地找的基本方法后,在進行練習的時候也會選擇剛才優化過的好的方法進行練習。
4、找倍數的特征。在完成找一個數的倍數之后,我們可以直接出示3,2,5的倍數是哪些,讓學生觀察三個倍數,再說一說自己的發現,放手讓學生去找或許學生能夠很快的找出來,但如果給好具體的問題,可能會限制一些學生的思考。如果學生在觀察時沒有發現我們所想要總結的特征,可以對學生進行適當的提示,讓學生觀察一個數最小的倍數,最大的倍數和倍數的個數等。先給學生足夠的時間讓學生自己去找,我們要相信他們藕能力做到。
5、課堂常規的問題。在上課之前我應先確定好小組的具體分配,以免學生在小組活動中找不到合作的對象,如果上課之前具體的分好了,小組討論的效率會高很多。在上課時,我要少說,把更多說的機會留給學生,讓學生去表達自己的想法,同時還要相信學生,不要怕學生不會,而給出很多的條條框框,限制了學生的思維發展。
倍數和因數教學反思15
一、教材與知識點的對比與區別。
1、對比新版教材知識設置與傳統教材的區別。
有關數論的這部分知識是傳統教學內容,但教材在傳承以往優秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內容的劃分,還是從微觀方面——具體內容的設計上都獨具匠心。“因數與倍數”的認識與原教材有以下兩方面的區別:
(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。
(2)“約數”一詞被“因數”所取代。
這樣的變化原因何在?教師必須要認真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學習教參了解到以下信息:
學生的原有知識基礎是在已經能夠區分整除與余數除法,對整除的含義有比較清楚的認識,不出現整除的定義并不會對學生理解其他概念產生任何影響。因此,本教材中刪去了“整除”的數學化定義。
2、相似概念的對比。
(1)彼“因數”非此“因數”。
在同一個乘法算式中,兩者都是指乘號兩邊的整數,但前者是相對于“積”而言的,與“乘數”同義,可以是小數。而后者是相對于“倍數”而言的,與以前所說的“約數”同義,說“X是X的因數”時,兩者都只能是整數。
(2)“倍數”與“倍”的區別。
“倍”的概念比“倍數”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數”。我們在求一個數的倍數時,運用的方法與“求一個數的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數倍。
二、教法的運用實踐
1、“因數與倍數”概念的數的應用范圍的規定直接運用講述法。對與本知識點的概念是人為規定的.一個范圍,因此,對于學生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學生一個直觀的感受。“因數與倍數”的運用范圍就是在非0自然數的范疇之內,與小數無關,與分數無關,與負數無關(雖沒學,但有小部分學生了解)。同時強調——非0——因為0乘任何數得0,0除以任何數得0。研究它的因數與倍數是沒有意義。我得到的經驗就是對于數學當中規定性的概念用直接講述法,讓學生清晰明確。因此,用直接導入法,先復習自然數的概念,再寫出乘法算式3*4=12,說明在這個算式中,3和4是12的因數,12是3和4的倍數。
2、在進行延續性教學中,可以讓學生探究怎么樣找一個數的因數和倍數,在板書要講究一個格式與對稱性,這樣在對學生發現倍數與因數個數的有限與無限的對比,再就是發現一個數的因數的最小因數是1,最大因數是它本身。一個數的倍數的最小的倍數是它本身,而沒有最大的倍數。這些都是上課時應該要注意的細節,這對于學生良好的學習慣的培養也是很重要的。
【倍數和因數教學反思】相關文章:
《倍數和因數》教學反思04-11
因數和倍數教學反思04-11
因數和倍數教學反思(精選25篇)03-01
因數和倍數教學反思15篇04-18
《因數和倍數》的說課稿01-09
五年級下冊因數和倍數教學反思04-04
《因數和倍數》的說課稿6篇01-09
《因數與倍數》說課稿12-22
倍數特征教學反思03-16